These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 9520322)

  • 1. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo.
    Logan CY; McClay DR
    Development; 1997 Jun; 124(11):2213-23. PubMed ID: 9187147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium.
    Kominami T; Takata H
    Dev Growth Differ; 2004 Aug; 46(4):309-26. PubMed ID: 15367199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LiCl perturbs ectodermal veg1 lineage allocations in Strongylocentrotus purpuratus embryos.
    Cameron RA; Davidson EH
    Dev Biol; 1997 Jul; 187(2):236-9. PubMed ID: 9242420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endoderm differentiation in vitro identifies a transitional period for endoderm ontogeny in the sea urchin embryo.
    Chen SW; Wessel GM
    Dev Biol; 1996 Apr; 175(1):57-65. PubMed ID: 8608869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo.
    Yuh CH; Davidson EH
    Development; 1996 Apr; 122(4):1069-82. PubMed ID: 8620834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brn1/2/4, the predicted midgut regulator of the endo16 gene of the sea urchin embryo.
    Yuh CH; Dorman ER; Davidson EH
    Dev Biol; 2005 May; 281(2):286-98. PubMed ID: 15893979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo.
    Ruffins SW; Ettensohn CA
    Dev Biol; 1993 Nov; 160(1):285-8. PubMed ID: 8224545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
    Ruffins SW; Ettensohn CA
    Development; 1996 Jan; 122(1):253-63. PubMed ID: 8565837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern formation during gastrulation in the sea urchin embryo.
    McClay DR; Armstrong NA; Hardin J
    Dev Suppl; 1992; ():33-41. PubMed ID: 1299366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. brachyury Target genes in the early sea urchin embryo isolated by differential macroarray screening.
    Rast JP; Cameron RA; Poustka AJ; Davidson EH
    Dev Biol; 2002 Jun; 246(1):191-208. PubMed ID: 12027442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus.
    Martik ML; McClay DR
    Mech Dev; 2017 Dec; 148():3-10. PubMed ID: 28684256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
    Oliveri P; Walton KD; Davidson EH; McClay DR
    Development; 2006 Nov; 133(21):4173-81. PubMed ID: 17038513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endo16, a large multidomain protein found on the surface and ECM of endodermal cells during sea urchin gastrulation, binds calcium.
    Soltysik-Española M; Klinzing DC; Pfarr K; Burke RD; Ernst SG
    Dev Biol; 1994 Sep; 165(1):73-85. PubMed ID: 8088452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells.
    Nakajima Y; Burke RD
    Dev Biol; 1996 Nov; 179(2):436-46. PubMed ID: 8903358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endo16, a lineage-specific protein of the sea urchin embryo, is first expressed just prior to gastrulation.
    Nocente-McGrath C; Brenner CA; Ernst SG
    Dev Biol; 1989 Nov; 136(1):264-72. PubMed ID: 2680683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single-cell RNA-seq analysis of Brachyury-expressing cell clusters suggests a morphogenesis-associated signal center of oral ectoderm in sea urchin embryos.
    Satoh N; Hisata K; Foster S; Morita S; Nishitsuji K; Oulhen N; Tominaga H; Wessel GM
    Dev Biol; 2022 Mar; 483():128-142. PubMed ID: 35038441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.