BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 9520404)

  • 1. Epoxidation of olefins by cytochrome P450: evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant.
    Vaz AD; McGinnity DF; Coon MJ
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3555-60. PubMed ID: 9520404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroxo-iron and oxenoid-iron species as alternative oxygenating agents in cytochrome P450-catalyzed reactions: switching by threonine-302 to alanine mutagenesis of cytochrome P450 2B4.
    Vaz AD; Pernecky SJ; Raner GM; Coon MJ
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4644-8. PubMed ID: 8643457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple activated oxygen species in P450 catalysis: contributions To specificity in drug metabolism.
    Coon MJ; Vaz AD; McGinnity DF; Peng HM
    Drug Metab Dispos; 1998 Dec; 26(12):1190-3. PubMed ID: 9860926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxoiron(IV) porphyrin pi-cation radical complexes with a chameleon behavior in cytochrome P450 model reactions.
    Song WJ; Ryu YO; Song R; Nam W
    J Biol Inorg Chem; 2005 May; 10(3):294-304. PubMed ID: 15827730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ipso-substitution by cytochrome P450 with conversion of p-hydroxybenzene derivatives to hydroquinone: evidence for hydroperoxo-iron as the active oxygen species.
    Vatsis KP; Coon MJ
    Arch Biochem Biophys; 2002 Jan; 397(1):119-29. PubMed ID: 11747318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Searching for the second oxidant in the catalytic cycle of cytochrome P450: a theoretical investigation of the iron(III)-hydroperoxo species and its epoxidation pathways.
    Ogliaro F; de Visser SP; Cohen S; Sharma PK; Shaik S
    J Am Chem Soc; 2002 Mar; 124(11):2806-17. PubMed ID: 11890833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What factors influence the rate constant of substrate epoxidation by compound I of cytochrome P450 and analogous iron(IV)-oxo oxidants?
    Kumar D; Karamzadeh B; Sastry GN; de Visser SP
    J Am Chem Soc; 2010 Jun; 132(22):7656-67. PubMed ID: 20481499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions.
    Wang B; Lee YM; Clémancey M; Seo MS; Sarangi R; Latour JM; Nam W
    J Am Chem Soc; 2016 Feb; 138(7):2426-36. PubMed ID: 26816269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P450 active site architecture and reversibility: inactivation of cytochromes P450 2B4 and 2B4 T302A by tert-butyl acetylenes.
    Blobaum AL; Harris DL; Hollenberg PF
    Biochemistry; 2005 Mar; 44(10):3831-44. PubMed ID: 15751959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of porphyrin ligands on the regioselective dehydrogenation versus epoxidation of olefins by oxoiron(IV) mimics of cytochrome P450.
    Kumar D; Tahsini L; de Visser SP; Kang HY; Kim SJ; Nam W
    J Phys Chem A; 2009 Oct; 113(43):11713-22. PubMed ID: 19658379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What factors affect the regioselectivity of oxidation by cytochrome p450? A DFT study of allylic hydroxylation and double bond epoxidation in a model reaction.
    de Visser SP; Ogliaro F; Sharma PK; Shaik S
    J Am Chem Soc; 2002 Oct; 124(39):11809-26. PubMed ID: 12296749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Models and mechanisms of O-O bond activation by cytochrome P450. A critical assessment of the potential role of multiple active intermediates in oxidative catalysis.
    Hlavica P
    Eur J Biochem; 2004 Nov; 271(22):4335-60. PubMed ID: 15560776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Basis for Chemoselectivity Control in Oxidations of Internal Aryl-Alkenes Catalyzed by Laboratory Evolved P450s.
    Soler J; Gergel S; Hammer SC; Garcia-Borràs M
    Chembiochem; 2024 May; 25(10):e202400066. PubMed ID: 38567500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epoxidation of olefins by hydroperoxo-ferric cytochrome P450.
    Jin S; Makris TM; Bryson TA; Sligar SG; Dawson JH
    J Am Chem Soc; 2003 Mar; 125(12):3406-7. PubMed ID: 12643683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximal Pocket Controls Alkene Oxidation Selectivity of Cytochrome P450 and Chloroperoxidase toward Small, Nonpolar Substrates.
    Chatfield DC; Morozov AN
    J Phys Chem B; 2018 Aug; 122(32):7828-7838. PubMed ID: 30052045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidizing intermediates in P450 catalysis: a case for multiple oxidants.
    Modi AR; Dawson JH
    Adv Exp Med Biol; 2015; 851():63-81. PubMed ID: 26002731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate recognition by the multifunctional cytochrome P450 MycG in mycinamicin hydroxylation and epoxidation reactions.
    Li S; Tietz DR; Rutaganira FU; Kells PM; Anzai Y; Kato F; Pochapsky TC; Sherman DH; Podust LM
    J Biol Chem; 2012 Nov; 287(45):37880-90. PubMed ID: 22952225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroperoxoferric heme intermediate as a second electrophilic oxidant in cytochrome P450-catalyzed reactions.
    Jin S; Bryson TA; Dawson JH
    J Biol Inorg Chem; 2004 Sep; 9(6):644-53. PubMed ID: 15365901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxylation of Steroids by a Microbial Substrate-Promiscuous P450 Cytochrome (CYP105D7): Key Arginine Residues for Rational Design.
    Ma B; Wang Q; Ikeda H; Zhang C; Xu LH
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.