These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 9520476)

  • 21. An apparent association between glycosylphosphatidylinositol-anchored proteins and a sphingolipid in Tetrahymena mimbres.
    Zhang X; Thompson GA
    Biochem J; 1997 Apr; 323 ( Pt 1)(Pt 1):197-206. PubMed ID: 9173882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuronal polarity: vectorial cytoplasmic flow precedes axon formation.
    Bradke F; Dotti CG
    Neuron; 1997 Dec; 19(6):1175-86. PubMed ID: 9427242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thy-1 modulates neurological cell-cell and cell-matrix interactions through multiple molecular interactions.
    Leyton L; Hagood JS
    Adv Neurobiol; 2014; 8():3-20. PubMed ID: 25300130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains.
    Schroeder RJ; Ahmed SN; Zhu Y; London E; Brown DA
    J Biol Chem; 1998 Jan; 273(2):1150-7. PubMed ID: 9422781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The polarized sorting of membrane proteins expressed in cultured hippocampal neurons using viral vectors.
    Jareb M; Banker G
    Neuron; 1998 May; 20(5):855-67. PubMed ID: 9620691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct interactions among GPI-anchored, transmembrane and membrane associated intracellular proteins, and sphingolipids in lymphocyte and endothelial cell plasma membranes.
    Ilangumaran S; Briol A; Hoessli DC
    Biochim Biophys Acta; 1997 Sep; 1328(2):227-36. PubMed ID: 9315619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and Analysis of Lipid Rafts from Neural Cells and Tissues.
    Grassi S; Giussani P; Mauri L; Prioni S; Prinetti A
    Methods Mol Biol; 2021; 2187():1-25. PubMed ID: 32770498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of selective transport in neuronal protein sorting.
    Burack MA; Silverman MA; Banker G
    Neuron; 2000 May; 26(2):465-72. PubMed ID: 10839364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in the localization of NAP-22, a calmodulin binding membrane protein, during the development of neuronal polarity.
    Kashihara M; Miyata S; Kumanogoh H; Funatsu N; Matsunaga W; Kiyohara T; Sokawa Y; Maekawa S
    Neurosci Res; 2000 Aug; 37(4):315-25. PubMed ID: 10958980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane.
    Lusa S; Blom TS; Eskelinen EL; Kuismanen E; Månsson JE; Simons K; Ikonen E
    J Cell Sci; 2001 May; 114(Pt 10):1893-900. PubMed ID: 11329376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells.
    Radeva G; Sharom FJ
    Biochem J; 2004 May; 380(Pt 1):219-30. PubMed ID: 14769131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The surface glycoprotein Thy-1 is excluded from growing axons during development: a study of the expression of Thy-1 during axogenesis in hippocampus and hindbrain.
    Xue GP; Rivero BP; Morris RJ
    Development; 1991 May; 112(1):161-76. PubMed ID: 1685113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The membrane environment of endogenous cellular prion protein in primary rat cerebellar neurons.
    Loberto N; Prioni S; Bettiga A; Chigorno V; Prinetti A; Sonnino S
    J Neurochem; 2005 Nov; 95(3):771-83. PubMed ID: 16248888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons.
    Herreros J; Ng T; Schiavo G
    Mol Biol Cell; 2001 Oct; 12(10):2947-60. PubMed ID: 11598183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct roles for sphingolipids and glycosphingolipids at different stages of neuronal development.
    Futerman AH
    Acta Biochim Pol; 1998; 45(2):469-78. PubMed ID: 9821876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establishment of neuronal polarity: lessons from cultured hippocampal neurons.
    Bradke F; Dotti CG
    Curr Opin Neurobiol; 2000 Oct; 10(5):574-81. PubMed ID: 11084319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts.
    Nguyen DH; Hildreth JE
    J Virol; 2000 Apr; 74(7):3264-72. PubMed ID: 10708443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomic characterisation of neuronal sphingolipid-cholesterol microdomains: role in plasminogen activation.
    Ledesma MD; Da Silva JS; Schevchenko A; Wilm M; Dotti CG
    Brain Res; 2003 Oct; 987(1):107-16. PubMed ID: 14499952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane domains and polarized trafficking of sphingolipids.
    Maier O; Aït Slimane T; Hoekstra D
    Semin Cell Dev Biol; 2001 Apr; 12(2):149-61. PubMed ID: 11292381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An apical-type trafficking pathway is present in cultured oligodendrocytes but the sphingolipid-enriched myelin membrane is the target of a basolateral-type pathway.
    de Vries H; Schrage C; Hoekstra D
    Mol Biol Cell; 1998 Mar; 9(3):599-609. PubMed ID: 9487129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.