BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 9520490)

  • 61. A chloride channel widely expressed in epithelial and non-epithelial cells.
    Thiemann A; Gründer S; Pusch M; Jentsch TJ
    Nature; 1992 Mar; 356(6364):57-60. PubMed ID: 1311421
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels.
    Thompson CH; Olivetti PR; Fuller MD; Freeman CS; McMaster D; French RJ; Pohl J; Kubanek J; McCarty NA
    J Biol Chem; 2009 Sep; 284(38):26051-62. PubMed ID: 19574231
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular mechanisms of Bartter syndrome caused by mutations in the BSND gene.
    Hayama A; Rai T; Sasaki S; Uchida S
    Histochem Cell Biol; 2003 Jun; 119(6):485-93. PubMed ID: 12761627
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sorting motifs of the endosomal/lysosomal CLC chloride transporters.
    Stauber T; Jentsch TJ
    J Biol Chem; 2010 Nov; 285(45):34537-48. PubMed ID: 20817731
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Regulatory-auxiliary subunits of CLC chloride channel-transport proteins.
    Barrallo-Gimeno A; Gradogna A; Zanardi I; Pusch M; Estévez R
    J Physiol; 2015 Sep; 593(18):4111-27. PubMed ID: 25762128
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The involvement of the Saccharomyces cerevisiae multidrug resistance transporters Pdr5p and Snq2p in cation resistance.
    Miyahara K; Mizunuma M; Hirata D; Tsuchiya E; Miyakawa T
    FEBS Lett; 1996 Dec; 399(3):317-20. PubMed ID: 8985171
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Inward rectification in ClC-0 chloride channels caused by mutations in several protein regions.
    Ludewig U; Jentsch TJ; Pusch M
    J Gen Physiol; 1997 Aug; 110(2):165-71. PubMed ID: 9236209
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Erv14 cargo receptor participates in regulation of plasma-membrane potential, intracellular pH and potassium homeostasis via its interaction with K
    Zimmermannová O; Felcmanová K; Rosas-Santiago P; Papoušková K; Pantoja O; Sychrová H
    Biochim Biophys Acta Mol Cell Res; 2019 Sep; 1866(9):1376-1388. PubMed ID: 31136755
    [TBL] [Abstract][Full Text] [Related]  

  • 69. ClC-K chloride channels: emerging pathophysiology of Bartter syndrome type 3.
    Andrini O; Keck M; Briones R; Lourdel S; Vargas-Poussou R; Teulon J
    Am J Physiol Renal Physiol; 2015 Jun; 308(12):F1324-34. PubMed ID: 25810436
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription.
    Szczypka MS; Zhu Z; Silar P; Thiele DJ
    Yeast; 1997 Dec; 13(15):1423-35. PubMed ID: 9434348
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Elimination of the slow gating of ClC-0 chloride channel by a point mutation.
    Lin YW; Lin CW; Chen TY
    J Gen Physiol; 1999 Jul; 114(1):1-12. PubMed ID: 10398688
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The family of SMF metal ion transporters in yeast cells.
    Cohen A; Nelson H; Nelson N
    J Biol Chem; 2000 Oct; 275(43):33388-94. PubMed ID: 10930410
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Oxidation and reduction control of the inactivation gating of Torpedo ClC-0 chloride channels.
    Li Y; Yu WP; Lin CW; Chen TY
    Biophys J; 2005 Jun; 88(6):3936-45. PubMed ID: 15778445
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The yeast mutant vps5Delta affected in the recycling of Golgi membrane proteins displays an enhanced vacuolar Mg2+/H+ exchange activity.
    Borrelly G; Boyer JC; Touraine B; Szponarski W; Rambier M; Gibrat R
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9660-5. PubMed ID: 11493679
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gating competence of constitutively open CLC-0 mutants revealed by the interaction with a small organic Inhibitor.
    Traverso S; Elia L; Pusch M
    J Gen Physiol; 2003 Sep; 122(3):295-306. PubMed ID: 12913089
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Pharmacological characterization of chloride channels belonging to the ClC family by the use of chiral clofibric acid derivatives.
    Pusch M; Liantonio A; Bertorello L; Accardi A; De Luca A; Pierno S; Tortorella V; Camerino DC
    Mol Pharmacol; 2000 Sep; 58(3):498-507. PubMed ID: 10953042
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Chloride channel ClC-3 in gills of the euryhaline teleost, Tetraodon nigroviridis: expression, localization and the possible role of chloride absorption.
    Tang CH; Hwang LY; Lee TH
    J Exp Biol; 2010 Mar; 213(5):683-93. PubMed ID: 20154183
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functional evaluation of Dent's disease-causing mutations: implications for ClC-5 channel trafficking and internalization.
    Ludwig M; Doroszewicz J; Seyberth HW; Bökenkamp A; Balluch B; Nuutinen M; Utsch B; Waldegger S
    Hum Genet; 2005 Jul; 117(2-3):228-37. PubMed ID: 15895257
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Discovery of CLC transport proteins: cloning, structure, function and pathophysiology.
    Jentsch TJ
    J Physiol; 2015 Sep; 593(18):4091-109. PubMed ID: 25590607
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A voltage-gated chloride channel in the yeast Saccharomyces cerevisiae.
    Huang ME; Chuat JC; Galibert F
    J Mol Biol; 1994 Sep; 242(4):595-8. PubMed ID: 7932715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.