BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 9521115)

  • 1. Trifluoroethanol effects on helix propensity and electrostatic interactions in the helical peptide from ribonuclease T1.
    Myers JK; Pace CN; Scholtz JM
    Protein Sci; 1998 Feb; 7(2):383-8. PubMed ID: 9521115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helix propensities are identical in proteins and peptides.
    Myers JK; Pace CN; Scholtz JM
    Biochemistry; 1997 Sep; 36(36):10923-9. PubMed ID: 9283083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40 volume percent trifluoroethanol.
    Rohl CA; Chakrabartty A; Baldwin RL
    Protein Sci; 1996 Dec; 5(12):2623-37. PubMed ID: 8976571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helix propagation in trifluoroethanol solutions.
    Storrs RW; Truckses D; Wemmer DE
    Biopolymers; 1992 Dec; 32(12):1695-702. PubMed ID: 1472652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative determination of helical propensities from trifluoroethanol titration curves.
    Jasanoff A; Fersht AR
    Biochemistry; 1994 Mar; 33(8):2129-35. PubMed ID: 8117669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of the stability of a 22-residue alpha-helix in water and 30% trifluoroethanol.
    Van Buuren AR; Berendsen HJ
    Biopolymers; 1993 Aug; 33(8):1159-66. PubMed ID: 8364151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lifson-Roig nucleation for alpha-helices in trifluoroethanol: context has a strong effect on the helical propensity of amino acids.
    Lawrence JR; Johnson WC
    Biophys Chem; 2002 Dec; 101-102():375-85. PubMed ID: 12488015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformations of peptide fragments from the FK506 binding protein: comparison with the native and urea-unfolded states.
    Callihan DE; Logan TM
    J Mol Biol; 1999 Feb; 285(5):2161-75. PubMed ID: 9925792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High helical propensity of the peptide fragments derived from beta-lactoglobulin, a predominantly beta-sheet protein.
    Hamada D; Kuroda Y; Tanaka T; Goto Y
    J Mol Biol; 1995 Dec; 254(4):737-46. PubMed ID: 7500346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water.
    Luo P; Baldwin RL
    Biochemistry; 1997 Jul; 36(27):8413-21. PubMed ID: 9204889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide alpha-helicity in aqueous trifluoroethanol: correlations with predicted alpha-helicity and the secondary structure of the corresponding regions of bovine growth hormone.
    Lehrman SR; Tuls JL; Lund M
    Biochemistry; 1990 Jun; 29(23):5590-6. PubMed ID: 2386788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of TFE on the Helical Content of AK17 and HAL-1 Peptides: Theoretical Insights into the Mechanism of Helix Stabilization.
    Vymětal J; Bednárová L; Vondrášek J
    J Phys Chem B; 2016 Feb; 120(6):1048-59. PubMed ID: 26786280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural studies on peptides corresponding to mutants of the major alpha-helix of barnase.
    Kippen AD; Arcus VL; Fersht AR
    Biochemistry; 1994 Aug; 33(33):10013-21. PubMed ID: 8060969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding propensities of peptide fragments of myoglobin.
    Reymond MT; Merutka G; Dyson HJ; Wright PE
    Protein Sci; 1997 Mar; 6(3):706-16. PubMed ID: 9070453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol.
    Nelson JW; Kallenbach NR
    Proteins; 1986 Nov; 1(3):211-7. PubMed ID: 3449856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of the closing of individual hydrogen bonds during TFE-induced helix formation in a peptide.
    Jaravine VA; Alexandrescu AT; Grzesiek S
    Protein Sci; 2001 May; 10(5):943-50. PubMed ID: 11316874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of trifluoroethanol on the conformations of peptides representing the entire sequence of bovine pancreatic trypsin inhibitor.
    Kemmink J; Creighton TE
    Biochemistry; 1995 Oct; 34(39):12630-5. PubMed ID: 7548013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helix stability in barstar peptides.
    Soler-González AS; Fersht AR
    Eur J Biochem; 1997 Nov; 249(3):724-32. PubMed ID: 9395319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trifluoroethanol stabilizes the pH 4 folding intermediate of sperm whale apomyoglobin.
    Luo Y; Baldwin RL
    J Mol Biol; 1998 May; 279(1):49-57. PubMed ID: 9636699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic evidence for backbone desolvation of helical peptides by 2,2,2-trifluoroethanol: an isotope-edited FTIR study.
    Starzyk A; Barber-Armstrong W; Sridharan M; Decatur SM
    Biochemistry; 2005 Jan; 44(1):369-76. PubMed ID: 15628879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.