These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9521321)

  • 1. Common reference frame for neural coding of translational and rotational optic flow.
    Wylie DR; Bischof WF; Frost BJ
    Nature; 1998 Mar; 392(6673):278-82. PubMed ID: 9521321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of neurons in the medial column of the inferior olive in pigeons to translational and rotational optic flowfields.
    Winship IR; Wylie DR
    Exp Brain Res; 2001 Nov; 141(1):63-78. PubMed ID: 11685411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex spike activity of Purkinje cells in the ventral uvula and nodulus of pigeons in response to translational optic flow.
    Wylie DR; Frost BJ
    J Neurophysiol; 1999 Jan; 81(1):256-66. PubMed ID: 9914286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibular convergence patterns in vestibular nuclei neurons of alert primates.
    Dickman JD; Angelaki DE
    J Neurophysiol; 2002 Dec; 88(6):3518-33. PubMed ID: 12466465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Looming responses of telencephalic neurons in the pigeon are modulated by optic flow.
    Xiao Q; Frost BJ
    Brain Res; 2009 Dec; 1305():40-6. PubMed ID: 19822131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. II. The 3-dimensional reference frame of rotation neurons in the flocculus.
    Wylie DR; Frost BJ
    J Neurophysiol; 1993 Dec; 70(6):2647-59. PubMed ID: 8120604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses to moving visual stimuli in pretectal neurons of the small-spotted dogfish (Scyliorhinus canicula).
    Masseck OA; Hoffmann KP
    J Neurophysiol; 2008 Jan; 99(1):200-7. PubMed ID: 17977925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of visual motion and optic flow.
    Fukushima K
    Neural Netw; 2008 Jun; 21(5):774-85. PubMed ID: 18280109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population coding of self-motion: applying bayesian analysis to a population of visual interneurons in the fly.
    Karmeier K; Krapp HG; Egelhaaf M
    J Neurophysiol; 2005 Sep; 94(3):2182-94. PubMed ID: 15901759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gravity or translation: central processing of vestibular signals to detect motion or tilt.
    Angelaki DE; Dickman JD
    J Vestib Res; 2003; 13(4-6):245-53. PubMed ID: 15096668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of disparity-sensitive cortical neurons in signalling the direction of self-motion.
    Roy JP; Wurtz RH
    Nature; 1990 Nov; 348(6297):160-2. PubMed ID: 2234078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographical organization of inferior olive cells projecting to translation and rotation zones in the vestibulocerebellum of pigeons.
    Lau KL; Glover RG; Linkenhoker B; Wylie DR
    Neuroscience; 1998 Jul; 85(2):605-14. PubMed ID: 9622256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of self-motion by optic flow processing in single visual interneurons.
    Krapp HG; Hengstenberg R
    Nature; 1996 Dec; 384(6608):463-6. PubMed ID: 8945473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time to collision is signalled by neurons in the nucleus rotundus of pigeons.
    Wang Y; Frost BJ
    Nature; 1992 Mar; 356(6366):236-8. PubMed ID: 1552942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation.
    Wall MB; Lingnau A; Ashida H; Smith AT
    Eur J Neurosci; 2008 May; 27(10):2747-57. PubMed ID: 18547254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinate transformations and sensory integration in the detection of spatial orientation and self-motion: from models to experiments.
    Green AM; Angelaki DE
    Prog Brain Res; 2007; 165():155-80. PubMed ID: 17925245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heading representation in MST: sensory interactions and population encoding.
    Page WK; Duffy CJ
    J Neurophysiol; 2003 Apr; 89(4):1994-2013. PubMed ID: 12686576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical area MSTd combines visual cues to represent 3-D self-movement.
    Logan DJ; Duffy CJ
    Cereb Cortex; 2006 Oct; 16(10):1494-507. PubMed ID: 16339087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neural model of how the brain computes heading from optic flow in realistic scenes.
    Browning NA; Grossberg S; Mingolla E
    Cogn Psychol; 2009 Dec; 59(4):320-56. PubMed ID: 19716125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual contributions to human self-motion perception during horizontal body rotation.
    Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W
    Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.