BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9521532)

  • 1. Audiovocal behavior of Doppler-shift compensation in the horseshoe bat survives bilateral lesion of the paralemniscal tegmental area.
    Pillat J; Schuller G
    Exp Brain Res; 1998 Mar; 119(1):17-26. PubMed ID: 9521532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The central acoustic tract and audio-vocal coupling in the horseshoe bat, Rhinolophus rouxi.
    Behrend O; Schuller G
    Eur J Neurosci; 2000 Dec; 12(12):4268-80. PubMed ID: 11122338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periaqueductal gray and the region of the paralemniscal area have different functions in the control of vocalization in the neotropical bat, Phyllostomus discolor.
    Fenzl T; Schuller G
    Eur J Neurosci; 2002 Nov; 16(10):1974-86. PubMed ID: 12453061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of the paralemniscal tegmental area for audio-motor control in the moustached bat, Pteronotus p. parnellii: the afferent off efferent connections of the paralemniscal area.
    Schuller G; Fischer S; Schweizer H
    Eur J Neurosci; 1997 Feb; 9(2):342-55. PubMed ID: 9058054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency.
    Metzner W; Zhang S; Smotherman M
    J Exp Biol; 2002 Jun; 205(Pt 11):1607-16. PubMed ID: 12000805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural control of vocalization in bats: mapping of brainstem areas with electrical microstimulation eliciting species-specific echolocation calls in the rufous horseshoe bat.
    Schuller G; Radtke-Schuller S
    Exp Brain Res; 1990; 79(1):192-206. PubMed ID: 2311697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binaural influences on Doppler shift compensation of the horseshoe bat Rhinolophus rouxi.
    Behrend O; Kössl M; Schuller G
    J Comp Physiol A; 1999 Dec; 185(6):529-38. PubMed ID: 10633554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An audio-vocal interface in echolocating horseshoe bats.
    Metzner W
    J Neurosci; 1993 May; 13(5):1899-915. PubMed ID: 8478683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neural basis for auditory feedback control of vocal pitch.
    Smotherman M; Zhang S; Metzner W
    J Neurosci; 2003 Feb; 23(4):1464-77. PubMed ID: 12598635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats.
    Metzner W
    Nature; 1989 Oct; 341(6242):529-32. PubMed ID: 2797179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral and temporal gating mechanisms enhance the clutter rejection in the echolocating bat, Rhinolophus rouxi.
    Neumann I; Schuller G
    J Comp Physiol A; 1991 Jul; 169(1):109-16. PubMed ID: 1941714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Echolocating bats rely on audiovocal feedback to adapt sonar signal design.
    Luo J; Moss CF
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10978-10983. PubMed ID: 28973851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine control of call frequency by horseshoe bats.
    Smotherman M; Metzner W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jun; 189(6):435-46. PubMed ID: 12761645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of echolocation pulses by neurons of the nucleus ambiguus in the rufous horseshoe bat, Rhinolophus rouxi. I. Single unit recordings in the ventral motor nucleus of the laryngeal nerves in spontaneously vocalizing bats.
    Rübsamen R; Betz M
    J Comp Physiol A; 1986 Nov; 159(5):675-87. PubMed ID: 3543318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographic representation of vocal frequency demonstrated by microstimulation of anterior cingulate cortex in the echolocating bat, Pteronotus parnelli parnelli.
    Gooler DM; O'Neill WE
    J Comp Physiol A; 1987 Aug; 161(2):283-94. PubMed ID: 3625577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of echo intensity on Doppler-shift compensation behavior in horseshoe bats.
    Smotherman M; Metzner W
    J Neurophysiol; 2003 Feb; 89(2):814-21. PubMed ID: 12574459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different auditory feedback control for echolocation and communication in horseshoe bats.
    Liu Y; Feng J; Metzner W
    PLoS One; 2013; 8(4):e62710. PubMed ID: 23638137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissimilarities in the vocal control over communication and echolocation calls in bats.
    Fenzl T; Schuller G
    Behav Brain Res; 2007 Sep; 182(2):173-9. PubMed ID: 17227683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characterization and comparison of the doppler compensation acoustic wave in Hipposideros armiger].
    Wang XZ; Hu KL; Wei L; Xu D; Zhang LB
    Dongwuxue Yanjiu; 2010 Dec; 31(6):663-9. PubMed ID: 21174358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise Doppler shift compensation in the hipposiderid bat, Hipposideros armiger.
    Schoeppler D; Schnitzler HU; Denzinger A
    Sci Rep; 2018 Mar; 8(1):4598. PubMed ID: 29545520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.