These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9521541)

  • 1. Comparative study of event-related potentials and positron emission tomography activation during a paired-associate memory paradigm.
    Honda M; Barrett G; Yoshimura N; Sadato N; Yonekura Y; Shibasaki H
    Exp Brain Res; 1998 Mar; 119(1):103-15. PubMed ID: 9521541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Event-related potentials during paired associate memory paradigm.
    Honda M; Barrett G; Yoshimura N; Ikeda A; Nagamine T; Shibasaki H
    Electroencephalogr Clin Neurophysiol; 1996 Sep; 100(5):407-21. PubMed ID: 8893658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Right prefrontal activation during encoding, but not during retrieval, in a non-verbal paired-associates task.
    Klingberg T; Roland PE
    Cereb Cortex; 1998; 8(1):73-9. PubMed ID: 9510387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frontal and parietal networks for conditional motor learning: a positron emission tomography study.
    Deiber MP; Wise SP; Honda M; Catalan MJ; Grafman J; Hallett M
    J Neurophysiol; 1997 Aug; 78(2):977-91. PubMed ID: 9307128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-behavior relationships: evidence from practice effects in spatial stimulus-response compatibility.
    Iacoboni M; Woods RP; Mazziotta JC
    J Neurophysiol; 1996 Jul; 76(1):321-31. PubMed ID: 8836228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral structures participating in motor preparation in humans: a positron emission tomography study.
    Deiber MP; Ibañez V; Sadato N; Hallett M
    J Neurophysiol; 1996 Jan; 75(1):233-47. PubMed ID: 8822554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval.
    Düzel E; Picton TW; Cabeza R; Yonelinas AP; Scheich H; Heinze HJ; Tulving E
    Hum Brain Mapp; 2001 Jun; 13(2):104-23. PubMed ID: 11346889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in regional cerebral blood flow during working memory for faces.
    Grady CL; McIntosh AR; Bookstein F; Horwitz B; Rapoport SI; Haxby JV
    Neuroimage; 1998 Nov; 8(4):409-25. PubMed ID: 9811558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholinergic enhancement eliminates modulation of neural activity by task difficulty in the prefrontal cortex during working memory.
    Furey ML; Ricciardi E; Schapiro MB; Rapoport SI; Pietrini P
    J Cogn Neurosci; 2008 Jul; 20(7):1342-53. PubMed ID: 18284346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrieval of relational information: a role for the left inferior prefrontal cortex.
    Badgaiyan RD; Schacter DL; Alpert NM
    Neuroimage; 2002 Sep; 17(1):393-400. PubMed ID: 12482092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced cerebral blood flow response and compensation among patients with untreated hypertension.
    Jennings JR; Muldoon MF; Ryan C; Price JC; Greer P; Sutton-Tyrrell K; van der Veen FM; Meltzer CC
    Neurology; 2005 Apr; 64(8):1358-65. PubMed ID: 15851723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visuomotor transformations for reaching to memorized targets: a PET study.
    Lacquaniti F; Perani D; Guigon E; Bettinardi V; Carrozzo M; Grassi F; Rossetti Y; Fazio F
    Neuroimage; 1997 Feb; 5(2):129-46. PubMed ID: 9345543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining working memory from ERP topography.
    Löw A; Rockstroh B; Cohen R; Hauk O; Berg P; Maier W
    Brain Topogr; 1999; 12(1):39-47. PubMed ID: 10582564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of verbal and spatial information processing using event-related potentials and positron emission tomography.
    Ninomiya H; Ichimiya A; Chen CH; Onitsuka T; Kuwabara Y; Otsuka M; Ichiya Y
    Psychiatry Clin Neurosci; 1997 Oct; 51(5):327-32. PubMed ID: 9413882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the rostral frontal cortex (area 10) in prospective memory: a lateral versus medial dissociation.
    Burgess PW; Scott SK; Frith CD
    Neuropsychologia; 2003; 41(8):906-18. PubMed ID: 12667527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task.
    Chafee MV; Goldman-Rakic PS
    J Neurophysiol; 1998 Jun; 79(6):2919-40. PubMed ID: 9636098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.