These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
576 related articles for article (PubMed ID: 9521697)
1. Stopped-flow analysis of CO and NO binding to inducible nitric oxide synthase. Abu-Soud HM; Wu C; Ghosh DK; Stuehr DJ Biochemistry; 1998 Mar; 37(11):3777-86. PubMed ID: 9521697 [TBL] [Abstract][Full Text] [Related]
2. Nitric oxide-generated P420 nitric oxide synthase: characterization and roles for tetrahydrobiopterin and substrate in protecting against or reversing the P420 conversion. Huang L; Abu-Soud HM; Hille R; Stuehr DJ Biochemistry; 1999 Feb; 38(6):1912-20. PubMed ID: 10026272 [TBL] [Abstract][Full Text] [Related]
3. Formation of nitric oxide synthase-iron(II) nitrosoalkane complexes: severe restriction of access to the iron(II) site in the presence of tetrahydrobiopterin. Renodon A; Boucher JL; Wu C; Gachhui R; Sari MA; Mansuy D; Stuehr D Biochemistry; 1998 May; 37(18):6367-74. PubMed ID: 9572852 [TBL] [Abstract][Full Text] [Related]
4. Endothelial nitric oxide synthase: modulations of the distal heme site produced by progressive N-terminal deletions. Rodríguez-Crespo I; Moënne-Loccoz P; Loehr TM; Ortiz de Montellano PR Biochemistry; 1997 Jul; 36(28):8530-8. PubMed ID: 9214298 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the inducible nitric oxide synthase oxygenase domain identifies a 49 amino acid segment required for subunit dimerization and tetrahydrobiopterin interaction. Ghosh DK; Wu C; Pitters E; Moloney M; Werner ER; Mayer B; Stuehr DJ Biochemistry; 1997 Sep; 36(35):10609-19. PubMed ID: 9271491 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the kinetics of CO binding to neuronal nitric oxide synthase by flash photolysis: dual effects of substrates, inhibitors, and tetrahydrobiopterin. Bengea S; Araki Y; Ito O; Igarashi J; Sagami I; Shimizu T J Inorg Biochem; 2004 Jul; 98(7):1210-6. PubMed ID: 15219987 [TBL] [Abstract][Full Text] [Related]
7. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms. Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894 [TBL] [Abstract][Full Text] [Related]
8. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase. Berka V; Yeh HC; Gao D; Kiran F; Tsai AL Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407 [TBL] [Abstract][Full Text] [Related]
9. Important role of tetrahydrobiopterin in no complex formation and interdomain electron transfer in neuronal nitric-oxide synthase. Noguchi T; Sagami I; Daff S; Shimizu T Biochem Biophys Res Commun; 2001 Apr; 282(5):1092-7. PubMed ID: 11302726 [TBL] [Abstract][Full Text] [Related]
10. Resonance Raman study of Bacillus subtilis NO synthase-like protein: similarities and differences with mammalian NO synthases. Santolini J; Roman M; Stuehr DJ; Mattioli TA Biochemistry; 2006 Feb; 45(5):1480-9. PubMed ID: 16445290 [TBL] [Abstract][Full Text] [Related]
11. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode. Lefèvre-Groboillot D; Frapart Y; Desbois A; Zimmermann JL; Boucher JL; Gorren AC; Mayer B; Stuehr DJ; Mansuy D Biochemistry; 2003 Apr; 42(13):3858-67. PubMed ID: 12667076 [TBL] [Abstract][Full Text] [Related]
12. Stoichiometric arginine binding in the oxygenase domain of inducible nitric oxide synthase requires a single molecule of tetrahydrobiopterin per dimer. Rafferty SP; Boyington JC; Kulansky R; Sun PD; Malech HL Biochem Biophys Res Commun; 1999 Apr; 257(2):344-7. PubMed ID: 10198214 [TBL] [Abstract][Full Text] [Related]
14. CO exchange of the oxyferrous complexes of endothelial nitric-oxide synthase oxygenase domain in the presence of 4-amino-tetrahydrobiopterin. Marchal S; Lange R; Sørlie M; Andersson KK; Gorren AC; Mayer B J Inorg Biochem; 2004 Jul; 98(7):1217-22. PubMed ID: 15219988 [TBL] [Abstract][Full Text] [Related]
15. Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation. Pant K; Crane BR Biochemistry; 2006 Feb; 45(8):2537-44. PubMed ID: 16489746 [TBL] [Abstract][Full Text] [Related]
16. Mutagenesis of acidic residues in the oxygenase domain of inducible nitric-oxide synthase identifies a glutamate involved in arginine binding. Gachhui R; Ghosh DK; Wu C; Parkinson J; Crane BR; Stuehr DJ Biochemistry; 1997 Apr; 36(17):5097-103. PubMed ID: 9136868 [TBL] [Abstract][Full Text] [Related]
17. Reactivity of the heme-dioxygen complex of the inducible nitric oxide synthase in the presence of alternative substrates. Lefèvre-Groboillot D; Boucher JL; Mansuy D; Stuehr DJ FEBS J; 2006 Jan; 273(1):180-91. PubMed ID: 16367758 [TBL] [Abstract][Full Text] [Related]
18. Arg97 at the heme-distal side of the isolated heme-bound PAS domain of a heme-based oxygen sensor from Escherichia coli (Ec DOS) plays critical roles in autoxidation and binding to gases, particularly O2. Ishitsuka Y; Araki Y; Tanaka A; Igarashi J; Ito O; Shimizu T Biochemistry; 2008 Aug; 47(34):8874-84. PubMed ID: 18672892 [TBL] [Abstract][Full Text] [Related]
19. Ligand-protein interactions in nitric oxide synthase. Rousseau DL; Li D; Couture M; Yeh SR J Inorg Biochem; 2005 Jan; 99(1):306-23. PubMed ID: 15598509 [TBL] [Abstract][Full Text] [Related]
20. Low-temperature stabilization and spectroscopic characterization of the dioxygen complex of the ferrous neuronal nitric oxide synthase oxygenase domain. Ledbetter AP; McMillan K; Roman LJ; Masters BS; Dawson JH; Sono M Biochemistry; 1999 Jun; 38(25):8014-21. PubMed ID: 10387045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]