BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 9521763)

  • 1. Mutation and modeling analysis of the Saccharomyces cerevisiae Swi6 ankyrin repeats.
    Ewaskow SP; Sidorova JM; Hendle J; Emery JC; Lycan DE; Zhang KY; Breeden LL
    Biochemistry; 1998 Mar; 37(13):4437-50. PubMed ID: 9521763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray structural analysis of the yeast cell cycle regulator Swi6 reveals variations of the ankyrin fold and has implications for Swi6 function.
    Foord R; Taylor IA; Sedgwick SG; Smerdon SJ
    Nat Struct Biol; 1999 Feb; 6(2):157-65. PubMed ID: 10048928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of ankyrin repeats reveals how a single point mutation in RFXANK results in bare lymphocyte syndrome.
    Nekrep N; Geyer M; Jabrane-Ferrat N; Peterlin BM
    Mol Cell Biol; 2001 Aug; 21(16):5566-76. PubMed ID: 11463838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional architecture of the yeast cell-cycle transcription factor swi6.
    Sedgwick SG; Taylor IA; Adam AC; Spanos A; Howell S; Morgan BA; Treiber MK; Kanuga N; Banks GR; Foord R; Smerdon SJ
    J Mol Biol; 1998 Sep; 281(5):763-75. PubMed ID: 9719633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A central role for SWI6 in modulating cell cycle Start-specific transcription in yeast.
    Dirick L; Moll T; Auer H; Nasmyth K
    Nature; 1992 Jun; 357(6378):508-13. PubMed ID: 1608451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6.
    Siegmund RF; Nasmyth KA
    Mol Cell Biol; 1996 Jun; 16(6):2647-55. PubMed ID: 8649372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast SWI4 protein contains a motif present in developmental regulators and is part of a complex involved in cell-cycle-dependent transcription.
    Andrews BJ; Herskowitz I
    Nature; 1989 Dec; 342(6251):830-3. PubMed ID: 2689885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of conserved sequence motifs in the budding yeast Cdc6 protein.
    Schepers A; Diffley JF
    J Mol Biol; 2001 May; 308(4):597-608. PubMed ID: 11350163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The MSN1 and NHP6A genes suppress SWI6 defects in Saccharomyces cerevisiae.
    Sidorova J; Breeden L
    Genetics; 1999 Jan; 151(1):45-55. PubMed ID: 9872947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The X-ray structure of the DNA-binding domain from the Saccharomyces cerevisiae cell-cycle transcription factor Mbp1 at 2.1 A resolution.
    Taylor IA; Treiber MK; Olivi L; Smerdon SJ
    J Mol Biol; 1997 Sep; 272(1):1-8. PubMed ID: 9299332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the SWI4/SWI6 protein complex, which directs G1/S-specific transcription in Saccharomyces cerevisiae.
    Sidorova J; Breeden L
    Mol Cell Biol; 1993 Feb; 13(2):1069-77. PubMed ID: 8423776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of proteins with WD-repeats: comparison of six members of the WD-repeat superfamily to the G protein beta subunit.
    Garcia-Higuera I; Fenoglio J; Li Y; Lewis C; Panchenko MP; Reiner O; Smith TF; Neer EJ
    Biochemistry; 1996 Nov; 35(44):13985-94. PubMed ID: 8909296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dominant mitochondrial mutator phenotype of Saccharomyces cerevisiae conferred by msh1 alleles altered in the sequence encoding the ATP-binding domain.
    Koprowski P; Fikus MU; Mieczkowski P; Ciesla Z
    Mol Genet Genomics; 2002 Feb; 266(6):988-94. PubMed ID: 11862493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the Saccharomyces cerevisiae cytochrome c oxidase assembly protein Cox11p.
    Banting GS; Glerum DM
    Eukaryot Cell; 2006 Mar; 5(3):568-78. PubMed ID: 16524911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A histone fold TAF octamer within the yeast TFIID transcriptional coactivator.
    Selleck W; Howley R; Fang Q; Podolny V; Fried MG; Buratowski S; Tan S
    Nat Struct Biol; 2001 Aug; 8(8):695-700. PubMed ID: 11473260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions.
    Peng H; Begg GE; Schultz DC; Friedman JR; Jensen DE; Speicher DW; Rauscher FJ
    J Mol Biol; 2000 Feb; 295(5):1139-62. PubMed ID: 10653693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and analysis of homologues of Saccharomyces cerevisiae Spt3 suggest conserved functional domains.
    Madison JM; Winston F
    Yeast; 1998 Mar; 14(5):409-17. PubMed ID: 9559549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The strength of acidic activation domains correlates with their affinity for both transcriptional and non-transcriptional proteins.
    Melcher K
    J Mol Biol; 2000 Sep; 301(5):1097-112. PubMed ID: 10966808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of yeast HSF by site-specific crosslinking.
    Bonner JJ; Chen D; Storey K; Tushan M; Lea K
    J Mol Biol; 2000 Sep; 302(3):581-92. PubMed ID: 10986120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The activation specificities of wild-type and mutant Gcn4p in vivo can be different from the DNA binding specificities of the corresponding bZip peptides in vitro.
    Suckow M; Hollenberg CP
    J Mol Biol; 1998 Mar; 276(5):887-902. PubMed ID: 9566194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.