These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 9521763)

  • 1. Mutation and modeling analysis of the Saccharomyces cerevisiae Swi6 ankyrin repeats.
    Ewaskow SP; Sidorova JM; Hendle J; Emery JC; Lycan DE; Zhang KY; Breeden LL
    Biochemistry; 1998 Mar; 37(13):4437-50. PubMed ID: 9521763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray structural analysis of the yeast cell cycle regulator Swi6 reveals variations of the ankyrin fold and has implications for Swi6 function.
    Foord R; Taylor IA; Sedgwick SG; Smerdon SJ
    Nat Struct Biol; 1999 Feb; 6(2):157-65. PubMed ID: 10048928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of ankyrin repeats reveals how a single point mutation in RFXANK results in bare lymphocyte syndrome.
    Nekrep N; Geyer M; Jabrane-Ferrat N; Peterlin BM
    Mol Cell Biol; 2001 Aug; 21(16):5566-76. PubMed ID: 11463838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional architecture of the yeast cell-cycle transcription factor swi6.
    Sedgwick SG; Taylor IA; Adam AC; Spanos A; Howell S; Morgan BA; Treiber MK; Kanuga N; Banks GR; Foord R; Smerdon SJ
    J Mol Biol; 1998 Sep; 281(5):763-75. PubMed ID: 9719633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A central role for SWI6 in modulating cell cycle Start-specific transcription in yeast.
    Dirick L; Moll T; Auer H; Nasmyth K
    Nature; 1992 Jun; 357(6378):508-13. PubMed ID: 1608451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6.
    Siegmund RF; Nasmyth KA
    Mol Cell Biol; 1996 Jun; 16(6):2647-55. PubMed ID: 8649372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast SWI4 protein contains a motif present in developmental regulators and is part of a complex involved in cell-cycle-dependent transcription.
    Andrews BJ; Herskowitz I
    Nature; 1989 Dec; 342(6251):830-3. PubMed ID: 2689885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of conserved sequence motifs in the budding yeast Cdc6 protein.
    Schepers A; Diffley JF
    J Mol Biol; 2001 May; 308(4):597-608. PubMed ID: 11350163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The MSN1 and NHP6A genes suppress SWI6 defects in Saccharomyces cerevisiae.
    Sidorova J; Breeden L
    Genetics; 1999 Jan; 151(1):45-55. PubMed ID: 9872947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The X-ray structure of the DNA-binding domain from the Saccharomyces cerevisiae cell-cycle transcription factor Mbp1 at 2.1 A resolution.
    Taylor IA; Treiber MK; Olivi L; Smerdon SJ
    J Mol Biol; 1997 Sep; 272(1):1-8. PubMed ID: 9299332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the SWI4/SWI6 protein complex, which directs G1/S-specific transcription in Saccharomyces cerevisiae.
    Sidorova J; Breeden L
    Mol Cell Biol; 1993 Feb; 13(2):1069-77. PubMed ID: 8423776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of proteins with WD-repeats: comparison of six members of the WD-repeat superfamily to the G protein beta subunit.
    Garcia-Higuera I; Fenoglio J; Li Y; Lewis C; Panchenko MP; Reiner O; Smith TF; Neer EJ
    Biochemistry; 1996 Nov; 35(44):13985-94. PubMed ID: 8909296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dominant mitochondrial mutator phenotype of Saccharomyces cerevisiae conferred by msh1 alleles altered in the sequence encoding the ATP-binding domain.
    Koprowski P; Fikus MU; Mieczkowski P; Ciesla Z
    Mol Genet Genomics; 2002 Feb; 266(6):988-94. PubMed ID: 11862493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the Saccharomyces cerevisiae cytochrome c oxidase assembly protein Cox11p.
    Banting GS; Glerum DM
    Eukaryot Cell; 2006 Mar; 5(3):568-78. PubMed ID: 16524911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A histone fold TAF octamer within the yeast TFIID transcriptional coactivator.
    Selleck W; Howley R; Fang Q; Podolny V; Fried MG; Buratowski S; Tan S
    Nat Struct Biol; 2001 Aug; 8(8):695-700. PubMed ID: 11473260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions.
    Peng H; Begg GE; Schultz DC; Friedman JR; Jensen DE; Speicher DW; Rauscher FJ
    J Mol Biol; 2000 Feb; 295(5):1139-62. PubMed ID: 10653693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and analysis of homologues of Saccharomyces cerevisiae Spt3 suggest conserved functional domains.
    Madison JM; Winston F
    Yeast; 1998 Mar; 14(5):409-17. PubMed ID: 9559549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The strength of acidic activation domains correlates with their affinity for both transcriptional and non-transcriptional proteins.
    Melcher K
    J Mol Biol; 2000 Sep; 301(5):1097-112. PubMed ID: 10966808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of yeast HSF by site-specific crosslinking.
    Bonner JJ; Chen D; Storey K; Tushan M; Lea K
    J Mol Biol; 2000 Sep; 302(3):581-92. PubMed ID: 10986120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The activation specificities of wild-type and mutant Gcn4p in vivo can be different from the DNA binding specificities of the corresponding bZip peptides in vitro.
    Suckow M; Hollenberg CP
    J Mol Biol; 1998 Mar; 276(5):887-902. PubMed ID: 9566194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.