These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

555 related articles for article (PubMed ID: 9521784)

  • 1. Effect of four helix bundle topology on heme binding and redox properties.
    Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Mar; 37(13):4635-43. PubMed ID: 9521784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of heme A and heme B in a designed four-helix bundle: implications for a cytochrome c oxidase maquette.
    Gibney BR; Isogai Y; Rabanal F; Reddy KS; Grosset AM; Moser CC; Dutton PL
    Biochemistry; 2000 Sep; 39(36):11041-9. PubMed ID: 10998241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global topology & stability and local structure & dynamics in a synthetic spin-labeled four-helix bundle protein.
    Gibney BR; Johansson JS; Rabanal F; Skalicky JJ; Wand AJ; Dutton PL
    Biochemistry; 1997 Mar; 36(10):2798-806. PubMed ID: 9062107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome.
    Kalsbeck WA; Robertson DE; Pandey RK; Smith KM; Dutton PL; Bocian DF
    Biochemistry; 1996 Mar; 35(11):3429-38. PubMed ID: 8639493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic modulation of heme properties in heme protein maquettes.
    Gibney BR; Huang SS; Skalicky JJ; Fuentes EJ; Wand AJ; Dutton PL
    Biochemistry; 2001 Sep; 40(35):10550-61. PubMed ID: 11523997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of de novo cytochromes c.
    Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y
    Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase.
    Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR
    Inorg Chem; 2006 Jun; 45(12):4685-94. PubMed ID: 16749832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the roles of the heme a side chains in cytochrome c oxidase using designed heme proteins.
    Zhuang J; Reddi AR; Wang Z; Khodaverdian B; Hegg EL; Gibney BR
    Biochemistry; 2006 Oct; 45(41):12530-8. PubMed ID: 17029408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic investigation into the mechanisms of proton-coupled electron transfer events in heme protein maquettes.
    Reddi AR; Reedy CJ; Mui S; Gibney BR
    Biochemistry; 2007 Jan; 46(1):291-305. PubMed ID: 17198400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How cytochromes with different folds control heme redox potentials.
    Mao J; Hauser K; Gunner MR
    Biochemistry; 2003 Aug; 42(33):9829-40. PubMed ID: 12924932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histidine placement in de novo-designed heme proteins.
    Gibney BR; Dutton PL
    Protein Sci; 1999 Sep; 8(9):1888-98. PubMed ID: 10493590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized de novo designed proteins: mechanism of proton coupling to oxidation/reduction in heme protein maquettes.
    Shifman JM; Moser CC; Kalsbeck WA; Bocian DF; Dutton PL
    Biochemistry; 1998 Nov; 37(47):16815-27. PubMed ID: 9843452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a five-coordinate heme protein maquette: a spectroscopic model of deoxymyoglobin.
    Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR
    Inorg Chem; 2004 Dec; 43(26):8218-20. PubMed ID: 15606161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A designed cavity in the hydrophobic core of a four-alpha-helix bundle improves volatile anesthetic binding affinity.
    Johansson JS; Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Feb; 37(5):1421-9. PubMed ID: 9477971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a novel heme protein with a non-heme globin scaffold.
    Isogai Y; Ishida M
    Biochemistry; 2009 Sep; 48(34):8136-42. PubMed ID: 19601582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes.
    Albrecht T; Li W; Ulstrup J; Haehnel W; Hildebrandt P
    Chemphyschem; 2005 May; 6(5):961-70. PubMed ID: 15884083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin.
    Reymond MT; Huo S; Duggan B; Wright PE; Dyson HJ
    Biochemistry; 1997 Apr; 36(17):5234-44. PubMed ID: 9136885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of peptide design in four-, five-, and six-helix bundle template assembled synthetic protein molecules.
    Seo ES; Sherman JC
    Biopolymers; 2007; 88(5):774-9. PubMed ID: 17554752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The HP-1 maquette: from an apoprotein structure to a structured hemoprotein designed to promote redox-coupled proton exchange.
    Huang SS; Koder RL; Lewis M; Wand AJ; Dutton PL
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5536-41. PubMed ID: 15056758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo design, synthesis, and function of semiartificial myoglobin conjugated with coiled-coil two-alpha-helix peptides.
    Sakamoto S; Ito A; Kudo K; Yoshikawa S
    Chemistry; 2004 Aug; 10(15):3717-26. PubMed ID: 15281155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.