BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9521788)

  • 1. Movement of the intermediate and rate determining transition state of barnase on the energy landscape with changing temperature.
    Dalby PA; Oliveberg M; Fersht AR
    Biochemistry; 1998 Mar; 37(13):4674-9. PubMed ID: 9521788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the energy surface of protein folding by structure-reactivity relationships and engineered proteins: observation of Hammond behavior for the gross structure of the transition state and anti-Hammond behavior for structural elements for unfolding/folding of barnase.
    Matthews JM; Fersht AR
    Biochemistry; 1995 May; 34(20):6805-14. PubMed ID: 7756312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the folding funnel of a polypeptide chain by biophysical studies on protein fragments.
    Neira JL; Fersht AR
    J Mol Biol; 1999 Jan; 285(3):1309-33. PubMed ID: 9887278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of transient conformations in the folding pathway of barnase: reorganization of the folding intermediate at low pH.
    Oliveberg M; Fersht AR
    Biochemistry; 1996 Feb; 35(8):2738-49. PubMed ID: 8611580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The folding pathway of barnase: the rate-limiting transition state and a hidden intermediate under native conditions.
    Vu ND; Feng H; Bai Y
    Biochemistry; 2004 Mar; 43(12):3346-56. PubMed ID: 15035606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding intermediates of wild-type and mutants of barnase. I. Use of phi-value analysis and m-values to probe the cooperative nature of the folding pre-equilibrium.
    Dalby PA; Oliveberg M; Fersht AR
    J Mol Biol; 1998 Feb; 276(3):625-46. PubMed ID: 9551101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of two buried salt bridges in the stability and folding pathway of barnase.
    Tissot AC; Vuilleumier S; Fersht AR
    Biochemistry; 1996 May; 35(21):6786-94. PubMed ID: 8639630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the structures of transition states and intermediates in folding: delineation of pathways at high resolution.
    Fersht AR
    Philos Trans R Soc Lond B Biol Sci; 1995 Apr; 348(1323):11-5. PubMed ID: 7770480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Movement of the position of the transition state in protein folding.
    Matouschek A; Otzen DE; Itzhaki LS; Jackson SE; Fersht AR
    Biochemistry; 1995 Oct; 34(41):13656-62. PubMed ID: 7577956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape of the free energy barriers for protein folding probed by multiple perturbation analysis.
    Schätzle M; Kiefhaber T
    J Mol Biol; 2006 Mar; 357(2):655-64. PubMed ID: 16442561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titration properties and thermodynamics of the transition state for folding: comparison of two-state and multi-state folding pathways.
    Tan YJ; Oliveberg M; Fersht AR
    J Mol Biol; 1996 Nov; 264(2):377-89. PubMed ID: 8951383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the transition state for folding of the 129 aa protein CheY resembles that of a smaller protein, CI-2.
    López-Hernández E; Serrano L
    Fold Des; 1996; 1(1):43-55. PubMed ID: 9079363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of physical organic chemistry to engineered mutants of proteins: Hammond postulate behavior in the transition state of protein folding.
    Matouschek A; Fersht AR
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7814-8. PubMed ID: 8356089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hammond behavior versus ground state effects in protein folding: evidence for narrow free energy barriers and residual structure in unfolded states.
    Sánchez IE; Kiefhaber T
    J Mol Biol; 2003 Apr; 327(4):867-84. PubMed ID: 12654269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation of the unfolding of barnase: characterization of the major intermediate.
    Li A; Daggett V
    J Mol Biol; 1998 Jan; 275(4):677-94. PubMed ID: 9466940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of definable nucleation sites in the rate-limiting transition state of barnase under native conditions.
    Chu RA; Bai Y
    J Mol Biol; 2002 Jan; 315(4):759-70. PubMed ID: 11812145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Gaussian statistical mechanical model for the equilibrium thermodynamics of barnase folding.
    Crippen GM
    J Mol Biol; 2001 Feb; 306(3):565-73. PubMed ID: 11178914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of the folding/unfolding transition state ensemble of chymotrypsin inhibitor 2 to changes in temperature and solvent.
    Day R; Daggett V
    Protein Sci; 2005 May; 14(5):1242-52. PubMed ID: 15840831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding.
    Itzhaki LS; Otzen DE; Fersht AR
    J Mol Biol; 1995 Nov; 254(2):260-88. PubMed ID: 7490748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding.
    Wong KB; Clarke J; Bond CJ; Neira JL; Freund SM; Fersht AR; Daggett V
    J Mol Biol; 2000 Mar; 296(5):1257-82. PubMed ID: 10698632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.