These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 9521789)
1. Topological disposition of Cys 222 in the alpha-subunit of nicotinic acetylcholine receptor analyzed by fluorescence-quenching and electron paramagnetic resonance measurements. Kim J; McNamee MG Biochemistry; 1998 Mar; 37(13):4680-6. PubMed ID: 9521789 [TBL] [Abstract][Full Text] [Related]
2. Protein-lipid interactions and Torpedo californica nicotinic acetylcholine receptor function. 1. Spatial disposition of cysteine residues in the gamma subunit analyzed by fluorescence-quenching and energy-transfer measurements. Narayanaswami V; Kim J; McNamee MG Biochemistry; 1993 Nov; 32(46):12413-9. PubMed ID: 8241131 [TBL] [Abstract][Full Text] [Related]
3. Mapping of the residues involved in a proposed beta-strand located in the ferric enterobactin receptor FepA using site-directed spin-labeling. Klug CS; Su W; Feix JB Biochemistry; 1997 Oct; 36(42):13027-33. PubMed ID: 9335564 [TBL] [Abstract][Full Text] [Related]
4. Interaction of lipids and ligands with nicotinic acetylcholine receptor vesicles assessed by electron paramagnetic resonance spectroscopy. Arias HR Methods Mol Biol; 2010; 606():291-318. PubMed ID: 20013404 [TBL] [Abstract][Full Text] [Related]
5. Membrane location of spin-labeled M13 major coat protein mutants determined by paramagnetic relaxation agents. Stopar D; Jansen KA; Páli T; Marsh D; Hemminga MA Biochemistry; 1997 Jul; 36(27):8261-8. PubMed ID: 9204871 [TBL] [Abstract][Full Text] [Related]
6. Conformation of the diphtheria toxin T domain in membranes: a site-directed spin-labeling study of the TH8 helix and TL5 loop. Oh KJ; Zhan H; Cui C; Altenbach C; Hubbell WL; Collier RJ Biochemistry; 1999 Aug; 38(32):10336-43. PubMed ID: 10441127 [TBL] [Abstract][Full Text] [Related]
7. 5-Doxylstearate-induced displacement of phencyclidine from its low-affinity binding sites on the nicotinic acetylcholine receptor. Arias HR Arch Biochem Biophys; 1999 Nov; 371(1):89-97. PubMed ID: 10525293 [TBL] [Abstract][Full Text] [Related]
8. Nicotinic acetylcholine receptor induces lateral segregation of phosphatidic acid and phosphatidylcholine in reconstituted membranes. Wenz JJ; Barrantes FJ Biochemistry; 2005 Jan; 44(1):398-410. PubMed ID: 15628882 [TBL] [Abstract][Full Text] [Related]
9. Site-directed spin-labeling reveals the orientation of the amino acid side-chains in the E-F loop of bacteriorhodopsin. Pfeiffer M; Rink T; Gerwert K; Oesterhelt D; Steinhoff HJ J Mol Biol; 1999 Mar; 287(1):163-71. PubMed ID: 10074414 [TBL] [Abstract][Full Text] [Related]
10. An NMR investigation of the conformational effect of nitroxide spin labels on Ala-rich helical peptides. Bolin KA; Hanson P; Wright SJ; Millhauser GL J Magn Reson; 1998 Apr; 131(2):248-53. PubMed ID: 9571100 [TBL] [Abstract][Full Text] [Related]
11. Protein-lipid interactions and Torpedo californica nicotinic acetylcholine receptor function. 2. Membrane fluidity and ligand-mediated alteration in the accessibility of gamma subunit cysteine residues to cholesterol. Narayanaswami V; McNamee MG Biochemistry; 1993 Nov; 32(46):12420-7. PubMed ID: 8241132 [TBL] [Abstract][Full Text] [Related]
12. Probing the agonist domain of the nicotinic acetylcholine receptor by cysteine scanning mutagenesis reveals residues in proximity to the alpha-bungarotoxin binding site. Spura A; Russin TS; Freedman ND; Grant M; McLaughlin JT; Hawrot E Biochemistry; 1999 Apr; 38(16):4912-21. PubMed ID: 10213592 [TBL] [Abstract][Full Text] [Related]
13. Identification of membrane-contacting loops of the catalytic domain of cytochrome P450 2C2 by tryptophan fluorescence scanning. Ozalp C; Szczesna-Skorupa E; Kemper B Biochemistry; 2006 Apr; 45(14):4629-37. PubMed ID: 16584198 [TBL] [Abstract][Full Text] [Related]
14. Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes [125I]TID-BE and [125I]TIDPC/16. Blanton MP; McCardy EA; Huggins A; Parikh D Biochemistry; 1998 Oct; 37(41):14545-55. PubMed ID: 9772183 [TBL] [Abstract][Full Text] [Related]
15. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling. Barranger-Mathys M; Cafiso DS Biochemistry; 1996 Jan; 35(2):498-505. PubMed ID: 8555220 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence and molecular dynamics studies of the acetylcholine receptor gammaM4 transmembrane peptide in reconstituted systems. Antollini SS; Xu Y; Jiang H; Barrantes FJ Mol Membr Biol; 2005; 22(6):471-83. PubMed ID: 16373319 [TBL] [Abstract][Full Text] [Related]
17. A model for short alpha-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain alpha-neurotoxins and alpha-conotoxins. Mordvintsev DY; Polyak YL; Levtsova OV; Tourleigh YV; Kasheverov IE; Shaitan KV; Utkin YN; Tsetlin VI Comput Biol Chem; 2005 Dec; 29(6):398-411. PubMed ID: 16290328 [TBL] [Abstract][Full Text] [Related]
18. Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes. Dreger M; Krauss M; Herrmann A; Hucho F Biochemistry; 1997 Jan; 36(4):839-47. PubMed ID: 9020782 [TBL] [Abstract][Full Text] [Related]
19. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase. Jittikoon J; East JM; Lee AG Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884 [TBL] [Abstract][Full Text] [Related]
20. Structural features and light-dependent changes in the sequence 59-75 connecting helices I and II in rhodopsin: a site-directed spin-labeling study. Altenbach C; Klein-Seetharaman J; Hwa J; Khorana HG; Hubbell WL Biochemistry; 1999 Jun; 38(25):7945-9. PubMed ID: 10387037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]