These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9521890)

  • 21. [Role of nitric oxide and mitochondrial permeability pore in changes of oxygen consumption in the working skeletal muscle].
    Sahach VF; Bohuslavs'kyÄ­ AIu; Dmytriieva AV; NadtochiÄ­ SM
    Fiziol Zh (1994); 2004; 50(2):19-26. PubMed ID: 15174202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiologic properties of contraction of the canine cremaster and cranial preputial muscles.
    Spurgeon TL; Kitchell RL; Lohse CL
    Am J Vet Res; 1978 Dec; 39(12):1884-7. PubMed ID: 749569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blood flow response to muscle contractions is more closely related to metabolic rate than contractile work.
    Hamann JJ; Kluess HA; Buckwalter JB; Clifford PS
    J Appl Physiol (1985); 2005 Jun; 98(6):2096-100. PubMed ID: 15691905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [MR-Imaging of lower leg muscle perfusion].
    Leppek R; Hoos O; Sattler A; Kohle S; Azzam S; Al Haffar I; Keil B; Ricken P; Klose KJ; Alfke H
    Herz; 2004 Feb; 29(1):32-46. PubMed ID: 14968340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic adaptations to repeated periods of contraction with reduced blood flow in canine skeletal muscle.
    MacInnes A; Timmons JA
    BMC Physiol; 2005 Jul; 5():11. PubMed ID: 16018808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of activation frequency on cellular signalling pathways during fatiguing contractions in rat skeletal muscle.
    Russ DW; Lovering RM
    Exp Physiol; 2006 Nov; 91(6):957-66. PubMed ID: 16857718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of microvascular oxygen pressures during recovery in rat fast-twitch muscle of differing oxidative capacity.
    McDonough P; Behnke BJ; Padilla DJ; Musch TI; Poole DC
    Exp Physiol; 2007 Jul; 92(4):731-8. PubMed ID: 17449542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coexistence of potentiation and low-frequency fatigue during voluntary exercise in human skeletal muscle.
    Fowles JR; Green HJ
    Can J Physiol Pharmacol; 2003 Dec; 81(12):1092-100. PubMed ID: 14719027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats.
    Ross RM; Wadley GD; Clark MG; Rattigan S; McConell GK
    Diabetes; 2007 Dec; 56(12):2885-92. PubMed ID: 17881613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Decrease in tetanic tension in 4-week tail-suspended rat soleus and analysis of its underlying mechanisms].
    Gao F; Yu ZB; Cheng JH; Feng HZ; Zhang LF
    Space Med Med Eng (Beijing); 2002 Aug; 15(4):255-9. PubMed ID: 12422862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of aging on microvascular oxygen pressures in rat skeletal muscle.
    Behnke BJ; Delp MD; Dougherty PJ; Musch TI; Poole DC
    Respir Physiol Neurobiol; 2005 Apr; 146(2-3):259-68. PubMed ID: 15766914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Faster adjustment of O2 delivery does not affect V(O2) on-kinetics in isolated in situ canine muscle.
    Grassi B; Gladden LB; Samaja M; Stary CM; Hogan MC
    J Appl Physiol (1985); 1998 Oct; 85(4):1394-403. PubMed ID: 9760333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer.
    Kindig CA; Richardson TE; Poole DC
    J Appl Physiol (1985); 2002 Jun; 92(6):2513-20. PubMed ID: 12015367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lactate metabolism in resting and contracting canine skeletal muscle with elevated lactate concentration.
    Kelley KM; Hamann JJ; Navarre C; Gladden LB
    J Appl Physiol (1985); 2002 Sep; 93(3):865-72. PubMed ID: 12183479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Length-dependent twitch contractile characteristics of skeletal muscle.
    Rassier DE; MacIntosh BR
    Can J Physiol Pharmacol; 2002 Oct; 80(10):993-1000. PubMed ID: 12450066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimulation characteristics that determine arteriolar dilation in skeletal muscle.
    Murrant CL
    Am J Physiol Regul Integr Comp Physiol; 2005 Aug; 289(2):R505-R513. PubMed ID: 16014451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscle sounds are emitted at the resonant frequencies of skeletal muscle.
    Barry DT; Cole NM
    IEEE Trans Biomed Eng; 1990 May; 37(5):525-31. PubMed ID: 2345010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanical effects of contractions on blood flow to the muscle.
    Naamani R; Hussain SN; Magder S
    Eur J Appl Physiol Occup Physiol; 1995; 71(2-3):102-12. PubMed ID: 7588676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy cost of twitch and tetanic contractions of rat muscle estimated in situ by gated 31P NMR.
    Foley JM; Meyer RA
    NMR Biomed; 1993; 6(1):32-8. PubMed ID: 8457424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of three methods of electrical stimulation for converting skeletal muscle to a fatigue resistant power source suitable for cardiac assistance.
    Badylak SF; Hinds M; Geddes LA
    Ann Biomed Eng; 1990; 18(3):239-50. PubMed ID: 2372161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.