BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9522278)

  • 1. Protein oxidation: examination of potential lipid-independent mechanisms for protein carbonyl formation.
    Blakeman DP; Ryan TP; Jolly RA; Petry TW
    J Biochem Mol Toxicol; 1998; 12(3):185-90. PubMed ID: 9522278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diquat-dependent protein carbonyl formation. Identification of lipid-dependent and lipid-independent pathways.
    Blakeman DP; Ryan TP; Jolly RA; Petry TW
    Biochem Pharmacol; 1995 Sep; 50(7):929-35. PubMed ID: 7575675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diquat-induced oxidative damage in hepatic microsomes: effects of antioxidants.
    Wolfgang GH; Jolly RA; Petry TW
    Free Radic Biol Med; 1991; 10(6):403-11. PubMed ID: 1654289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of in vitro lipid peroxidation by 21-aminosteroids. Evidence for differential mechanisms.
    Ryan TP; Steenwyk RC; Pearson PG; Petry TW
    Biochem Pharmacol; 1993 Sep; 46(5):877-84. PubMed ID: 8373438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of Fe2+-ADP and the relative unimportance of OH in the mechanism of mitomycin C-induced lipid peroxidation.
    Nakano H; Sugioka K; Nakano M; Mizukami M; Kimura H; Tero-Kubota S; Ikegami Y
    Biochim Biophys Acta; 1984 Dec; 796(3):285-93. PubMed ID: 6095916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH- and adriamycin-dependent microsomal release of iron and lipid peroxidation.
    Minotti G
    Arch Biochem Biophys; 1990 Mar; 277(2):268-76. PubMed ID: 2310194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diquat-induced oxidative damage in BCNU-pretreated hepatocytes of mature and old rats.
    Rikans LE; Cai Y
    Toxicol Appl Pharmacol; 1993 Feb; 118(2):263-70. PubMed ID: 8382845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of hydroxyl radicals during the enzymatic reductions of the Fe3+-ADP-phosphate-adriamycin and Fe3+-ADP-EDTA systems. Less involvement of hydroxyl radical and a great importance of proposed perferryl ion complexes in lipid peroxidation.
    Sugioka K; Nakano H; Nakano M; Tero-Kubota S; Ikegami Y
    Biochim Biophys Acta; 1983 Oct; 753(3):411-21. PubMed ID: 6311278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of diquat-induced lipid peroxidation and toxicity in precision-cut rat liver slices by novel antioxidants.
    Wolfgang GH; Jolly RA; Donarski WJ; Petry TW
    Toxicol Appl Pharmacol; 1991 Apr; 108(2):321-9. PubMed ID: 2017757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paraquat- and diquat-induced oxygen radical generation and lipid peroxidation in rat brain microsomes.
    Yumino K; Kawakami I; Tamura M; Hayashi T; Nakamura M
    J Biochem; 2002 Apr; 131(4):565-70. PubMed ID: 11926994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxicity of the redox cycling compound diquat in isolated hepatocytes: involvement of hydrogen peroxide and transition metals.
    Sandy MS; Moldeus P; Ross D; Smith MT
    Arch Biochem Biophys; 1987 Nov; 259(1):29-37. PubMed ID: 2825600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin E prevents induction of carbonyl group formation in microsomal protein by dehydroepiandrosterone.
    Swierczynski J; Mayer D
    Nutr Cancer; 1998; 32(2):101-6. PubMed ID: 9919619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstituted microsomal lipid peroxidation: ADP-Fe3+-dependent peroxidation of phospholipid vesicles containing NADPH-cytochrome P450 reductase and cytochrome P450.
    Morehouse LA; Aust SD
    Free Radic Biol Med; 1988; 4(5):269-77. PubMed ID: 3129344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of rat and human cytochrome P4502E1 catalytic activity and reactive oxygen radical formation by nitric oxide.
    Gergel D; Misík V; Riesz P; Cederbaum AI
    Arch Biochem Biophys; 1997 Jan; 337(2):239-50. PubMed ID: 9016819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant properties of S-adenosyl-L-methionine in Fe(2+)-initiated oxidations.
    Caro AA; Cederbaum AI
    Free Radic Biol Med; 2004 May; 36(10):1303-16. PubMed ID: 15110395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-associated enhancement of diquat-induced lipid peroxidation and cytotoxicity in isolated rat hepatocytes.
    Rikans LE; Cai Y
    J Pharmacol Exp Ther; 1992 Jul; 262(1):271-8. PubMed ID: 1320687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase.
    Fussell KC; Udasin RG; Gray JP; Mishin V; Smith PJ; Heck DE; Laskin JD
    Free Radic Biol Med; 2011 Apr; 50(7):874-82. PubMed ID: 21215309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiation of iron-induced lipid peroxidation by a series of bipyridyls in relation to their ability to reduce iron.
    Fernandez Y; Anglade F; Mitjavila S
    Toxicol Lett; 1997 Sep; 93(1):65-71. PubMed ID: 9381484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.