These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 9522385)
1. Influences of lung parenchyma density and thoracic fluid on ventilatory EIT measurements. Kunst PW; Vonk Noordegraaf A; Straver B; Aarts RA; Tesselaar CD; Postmus PE; de Vries PM Physiol Meas; 1998 Feb; 19(1):27-34. PubMed ID: 9522385 [TBL] [Abstract][Full Text] [Related]
2. Changes in the thoracic impedance distribution under different ventilatory conditions. Hahn G; Sipinková I; Baisch F; Hellige G Physiol Meas; 1995 Aug; 16(3 Suppl A):A161-73. PubMed ID: 8528115 [TBL] [Abstract][Full Text] [Related]
3. Thoracic electrical impedance tomographic measurements during volume controlled ventilation-effects of tidal volume and positive end-expiratory pressure. Frerichs I; Hahn G; Hellige G IEEE Trans Med Imaging; 1999 Sep; 18(9):764-73. PubMed ID: 10571381 [TBL] [Abstract][Full Text] [Related]
4. The value of electrical impedance tomography in assessing the effect of body position and positive airway pressures on regional lung ventilation in spontaneously breathing subjects. Riedel T; Richards T; Schibler A Intensive Care Med; 2005 Nov; 31(11):1522-8. PubMed ID: 16195908 [TBL] [Abstract][Full Text] [Related]
5. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. Adler A; Amyot R; Guardo R; Bates JH; Berthiaume Y J Appl Physiol (1985); 1997 Nov; 83(5):1762-7. PubMed ID: 9375349 [TBL] [Abstract][Full Text] [Related]
6. End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Hinz J; Hahn G; Neumann P; Sydow M; Mohrenweiser P; Hellige G; Burchardi H Intensive Care Med; 2003 Jan; 29(1):37-43. PubMed ID: 12528020 [TBL] [Abstract][Full Text] [Related]
7. Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study. Karsten J; Stueber T; Voigt N; Teschner E; Heinze H Crit Care; 2016 Jan; 20():3. PubMed ID: 26743570 [TBL] [Abstract][Full Text] [Related]
8. Lobe based image reconstruction in Electrical Impedance Tomography. Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374 [TBL] [Abstract][Full Text] [Related]
9. Positive end-expiratory pressure-induced changes in end-expiratory lung volume measured by spirometry and electric impedance tomography. Grivans C; Lundin S; Stenqvist O; Lindgren S Acta Anaesthesiol Scand; 2011 Oct; 55(9):1068-77. PubMed ID: 22092203 [TBL] [Abstract][Full Text] [Related]
10. Bedside Contribution of Electrical Impedance Tomography to Setting Positive End-Expiratory Pressure for Extracorporeal Membrane Oxygenation-treated Patients with Severe Acute Respiratory Distress Syndrome. Franchineau G; Bréchot N; Lebreton G; Hekimian G; Nieszkowska A; Trouillet JL; Leprince P; Chastre J; Luyt CE; Combes A; Schmidt M Am J Respir Crit Care Med; 2017 Aug; 196(4):447-457. PubMed ID: 28103448 [TBL] [Abstract][Full Text] [Related]
11. Linearity of electrical impedance tomography during maximum effort breathing and forced expiration maneuvers. Ngo C; Leonhardt S; Zhang T; Lüken M; Misgeld B; Vollmer T; Tenbrock K; Lehmann S Physiol Meas; 2017 Jan; 38(1):77-86. PubMed ID: 28004642 [TBL] [Abstract][Full Text] [Related]
12. Application of electrical impedance tomography in diagnosis of emphysema--a clinical study. Eyüboğlu BM; Oner AF; Baysal U; Biber C; Keyf AI; Yilmaz U; Erdoğan Y Physiol Meas; 1995 Aug; 16(3 Suppl A):A191-211. PubMed ID: 8528117 [TBL] [Abstract][Full Text] [Related]
13. Electrical impedance tomography for lung ventilation monitoring of the dog. Gloning S; Pieper K; Zoellner M; Meyer-Lindenberg A Tierarztl Prax Ausg K Kleintiere Heimtiere; 2017 Feb; 45(1):15-21. PubMed ID: 28094413 [TBL] [Abstract][Full Text] [Related]
14. Improvements in the image quality of ventilatory tomograms by electrical impedance tomography. Hahn G; Dittmar J; Just A; Hellige G Physiol Meas; 2008 Jun; 29(6):S51-61. PubMed ID: 18544812 [TBL] [Abstract][Full Text] [Related]
15. Electrical impedance tomography for predicting failure of spontaneous breathing trials in patients with prolonged weaning. Bickenbach J; Czaplik M; Polier M; Marx G; Marx N; Dreher M Crit Care; 2017 Jul; 21(1):177. PubMed ID: 28697778 [TBL] [Abstract][Full Text] [Related]
16. Performance of electrical impedance tomography in detecting regional tidal volumes during one-lung ventilation. Pulletz S; Elke G; Zick G; Schädler D; Scholz J; Weiler N; Frerichs I Acta Anaesthesiol Scand; 2008 Sep; 52(8):1131-9. PubMed ID: 18840115 [TBL] [Abstract][Full Text] [Related]
17. A comparison of ventilatory and cardiac related changes in EIT images of normal human lungs and of lungs with pulmonary emboli. Leathard AD; Brown BH; Campbell J; Zhang F; Morice AH; Tayler D Physiol Meas; 1994 May; 15 Suppl 2a():A137-46. PubMed ID: 8087036 [TBL] [Abstract][Full Text] [Related]
18. Assessing effects of PEEP and global expiratory lung volume on regional electrical impedance tomography. Markhorst DG; Groeneveld AB; Heethaar RM; Zonneveld E; Van Genderingen HR J Med Eng Technol; 2009; 33(4):281-7. PubMed ID: 19384703 [TBL] [Abstract][Full Text] [Related]
19. Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study. Karagiannidis C; Waldmann AD; Róka PL; Schreiber T; Strassmann S; Windisch W; Böhm SH Crit Care; 2018 Sep; 22(1):221. PubMed ID: 30236123 [TBL] [Abstract][Full Text] [Related]
20. Pulmonary vascular responses to hypoxia and hyperoxia in healthy volunteers and COPD patients measured by electrical impedance tomography. Smit HJ; Vonk-Noordegraaf A; Marcus JT; van der Weijden S; Postmus PE; de Vries PM; Boonstra A Chest; 2003 Jun; 123(6):1803-9. PubMed ID: 12796153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]