These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 9523184)
1. Regional differences in the vasorelaxant effects of nicorandil and amlodipine on isolated porcine coronary arteries. Tankó LB; Mikkelsen EO; Frøbert O; Bagger JP Fundam Clin Pharmacol; 1998; 12(1):50-7. PubMed ID: 9523184 [TBL] [Abstract][Full Text] [Related]
2. Nicorandil: differential contribution of K+ channel opening and guanylate cyclase stimulation to its vasorelaxant effects on various endothelin-1-contracted arterial preparations. Comparison to aprikalim (RP 52891) and nitroglycerin. Borg C; Mondot S; Mestre M; Cavero I J Pharmacol Exp Ther; 1991 Nov; 259(2):526-34. PubMed ID: 1682478 [TBL] [Abstract][Full Text] [Related]
3. Vasorelaxant mechanism of KRN2391 and nicorandil in porcine coronary arteries of different sizes. Miwa A; Kaneta S; Motoki K; Jinno Y; Kasai H; Okada Y; Fukushima H; Ogawa N Br J Pharmacol; 1993 Jul; 109(3):632-6. PubMed ID: 8358563 [TBL] [Abstract][Full Text] [Related]
4. The contribution of guanylate cyclase stimulation and K+ channel opening to nicorandil-induced vasorelaxation depends on the conduit vessel and on the nature of the spasmogen. Magnon M; Durand I; Cavero I J Pharmacol Exp Ther; 1994 Mar; 268(3):1411-8. PubMed ID: 7908056 [TBL] [Abstract][Full Text] [Related]
5. Analysis of relaxation and repolarization mechanisms of nicorandil in rat mesenteric artery. Fujiwara T; Angus JA Br J Pharmacol; 1996 Dec; 119(8):1549-56. PubMed ID: 8982500 [TBL] [Abstract][Full Text] [Related]
6. Dual mechanism of the relaxing effect of nicorandil by stimulation of cyclic GMP formation and by hyperpolarization. Kukovetz WR; Holzmann S; Braida C; Pöch G J Cardiovasc Pharmacol; 1991 Apr; 17(4):627-33. PubMed ID: 1711631 [TBL] [Abstract][Full Text] [Related]
7. Nicorandil-induced vasorelaxation: functional evidence for K+ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. Meisheri KD; Cipkus-Dubray LA; Hosner JM; Khan SA J Cardiovasc Pharmacol; 1991 Jun; 17(6):903-12. PubMed ID: 1714013 [TBL] [Abstract][Full Text] [Related]
8. Cytoplasmic calcium and the relaxation of canine coronary arterial smooth muscle produced by cromakalim, pinacidil and nicorandil. Yanagisawa T; Teshigawara T; Taira N Br J Pharmacol; 1990 Sep; 101(1):157-65. PubMed ID: 2149290 [TBL] [Abstract][Full Text] [Related]
9. Role of K+ channel opening and stimulation of cyclic GMP in the vasorelaxant effects of nicorandil in isolated piglet pulmonary and mesenteric arteries: relative efficacy and interactions between both pathways. Pérez-Vizcaíno F; Cogolludo AL; Villamor E; Tamargo J Br J Pharmacol; 1998 Mar; 123(5):847-54. PubMed ID: 9535012 [TBL] [Abstract][Full Text] [Related]
11. Nicorandil as a nitrate, and cromakalim as a potassium channel opener, dilate isolated porcine large coronary arteries in an agonist-nonselective manner. Satoh K; Mori T; Yamada H; Taira N Cardiovasc Drugs Ther; 1993 Aug; 7(4):691-9. PubMed ID: 8241013 [TBL] [Abstract][Full Text] [Related]
12. Differential antagonism by glibenclamide of the relaxant effects of cromakalim, pinacidil and nicorandil on canine large coronary arteries. Satoh K; Yamada H; Taira N Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan; 343(1):76-82. PubMed ID: 1827660 [TBL] [Abstract][Full Text] [Related]
13. Guanylate cyclase and not ATP-dependent K(+) channels seems temperature-dependent in smooth muscle relaxation of human umbilical arteries. Tiritilli A Eur J Pharmacol; 2000 Oct; 406(1):79-84. PubMed ID: 11011037 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of action of KRN2391 in canine coronary vascular bed. Fukata Y; Kaneta S; Okada Y; Yokoyama T; Jinno Y; Fukushima H; Ogawa N Jpn J Pharmacol; 1993 Nov; 63(3):305-11. PubMed ID: 8107323 [TBL] [Abstract][Full Text] [Related]
15. Vasodilatation of canine cerebral arteries by nicorandil, pinacidil and lemakalim. Zhang H; Stockbridge N; Weir B; Vollrath B; Cook D Gen Pharmacol; 1992 Mar; 23(2):197-201. PubMed ID: 1353469 [TBL] [Abstract][Full Text] [Related]
16. The relaxant action of nicorandil in guinea-pig isolated trachealis. Allen SL; Foster RW; Morgan GP; Small RC Br J Pharmacol; 1986 Jan; 87(1):117-27. PubMed ID: 2420397 [TBL] [Abstract][Full Text] [Related]
17. K+ channel opening mediates the vasorelaxant effects of nicorandil in the intact vascular system. Cavero I; Pratz J; Mondot S Z Kardiol; 1991; 80 Suppl 7():35-41. PubMed ID: 1838848 [TBL] [Abstract][Full Text] [Related]
18. Relaxant effects of pinacidil, nicorandil, hydralazine and nifedipine as studied in the porcine coronary artery and guinea-pig taenia coli. Matsui K; Ogawa Y; Imai S Arch Int Pharmacodyn Ther; 1986 Sep; 283(1):124-33. PubMed ID: 2948465 [TBL] [Abstract][Full Text] [Related]
19. Hyperpolarization induced by K+ channel openers inhibits Ca2+ influx and Ca2+ release in coronary artery. Yanagisawa T; Yamagishi T; Okada Y Cardiovasc Drugs Ther; 1993 Aug; 7 Suppl 3():565-74. PubMed ID: 8251426 [TBL] [Abstract][Full Text] [Related]
20. Heterogeneity in the vasorelaxing effect of nicorandil on dog epicardial coronary arteries: comparison with other NO donors. Matsumoto T; Takahashi M; Omura T; Takaoka A; Liu Q; Nakae I; Kinoshita M J Cardiovasc Pharmacol; 1997 Jun; 29(6):772-9. PubMed ID: 9234658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]