BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9523558)

  • 1. Role of oxidative stress and the glutathione system in loss of dopamine neurons due to impairment of energy metabolism.
    Zeevalk GD; Bernard LP; Nicklas WJ
    J Neurochem; 1998 Apr; 70(4):1421-30. PubMed ID: 9523558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitotoxicity and oxidative stress during inhibition of energy metabolism.
    Zeevalk GD; Bernard LP; Sinha C; Ehrhart J; Nicklas WJ
    Dev Neurosci; 1998; 20(4-5):444-53. PubMed ID: 9778583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress during energy impairment in mesencephalic cultures is not a downstream consequence of a secondary excitotoxicity.
    Zeevalk GD; Bernard LP; Nicklas WJ
    Neuroscience; 2000; 96(2):309-16. PubMed ID: 10683571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy stress-induced dopamine loss in glutathione peroxidase-overexpressing transgenic mice and in glutathione-depleted mesencephalic cultures.
    Zeevalk GD; Bernard LP; Albers DS; Mirochnitchenko O; Nicklas WJ; Sonsalla PK
    J Neurochem; 1997 Jan; 68(1):426-9. PubMed ID: 8978755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen peroxide removal and glutathione mixed disulfide formation during metabolic inhibition in mesencephalic cultures.
    Ehrhart J; Zeevalk GD
    J Neurochem; 2001 Jun; 77(6):1496-507. PubMed ID: 11413233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative vulnerability of dopamine and GABA neurons in mesencephalic culture to inhibition of succinate dehydrogenase by malonate and 3-nitropropionic acid and protection by NMDA receptor blockade.
    Zeevalk GD; Derr-Yellin E; Nicklas WJ
    J Pharmacol Exp Ther; 1995 Dec; 275(3):1124-30. PubMed ID: 8531072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo vulnerability of dopamine neurons to inhibition of energy metabolism.
    Zeevalk GD; Manzino L; Hoppe J; Sonsalla P
    Eur J Pharmacol; 1997 Feb; 320(2-3):111-9. PubMed ID: 9059843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative interaction between ascorbate and glutathione during mitochondrial impairment in mesencephalic cultures.
    Ehrhart J; Zeevalk GD
    J Neurochem; 2003 Sep; 86(6):1487-97. PubMed ID: 12950457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuation of malonate toxicity in primary mesencephalic cultures using the GABA transport blocker, NO-711.
    Stokes AH; Bernard LP; Nicklas WJ; Zeevalk GD
    J Neurosci Res; 2001 Apr; 64(1):43-52. PubMed ID: 11276050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel free radical spin traps protect against malonate and MPTP neurotoxicity.
    Matthews RT; Klivenyi P; Mueller G; Yang L; Wermer M; Thomas CE; Beal MF
    Exp Neurol; 1999 May; 157(1):120-6. PubMed ID: 10222114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA receptors modulate dopamine loss due to energy impairment in the substantia nigra but not striatum.
    Zeevalk GD; Manzino L; Sonsalla PK
    Exp Neurol; 2000 Feb; 161(2):638-46. PubMed ID: 10686083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protection of malonate-induced GABA but not dopamine loss by GABA transporter blockade in rat striatum.
    Zeevalk GD; Manzino L; Sonsalla PK
    Exp Neurol; 2002 Jul; 176(1):193-202. PubMed ID: 12093096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant treatment protects striatal neurons against excitotoxic insults.
    Nakao N; Grasbon-Frodl EM; Widner H; Brundin P
    Neuroscience; 1996 Jul; 73(1):185-200. PubMed ID: 8783241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role for dopamine in malonate-induced damage in vivo in striatum and in vitro in mesencephalic cultures.
    Moy LY; Zeevalk GD; Sonsalla PK
    J Neurochem; 2000 Apr; 74(4):1656-65. PubMed ID: 10737624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lazaroid treatment prevents death of cultured rat embryonic mesencephalic neurons following glutathione depletion.
    Grasbon-Frodl EM; Andersson A; Brundin P
    J Neurochem; 1996 Oct; 67(4):1653-60. PubMed ID: 8858950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial stress-induced dopamine efflux and neuronal damage by malonate involves the dopamine transporter.
    Moy LY; Wang SP; Sonsalla PK
    J Pharmacol Exp Ther; 2007 Feb; 320(2):747-56. PubMed ID: 17090704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical trapping and inhibition of iron-dependent CNS damage by cyclic nitrone spin traps.
    Thomas CE; Ohlweiler DF; Taylor VL; Schmidt CJ
    J Neurochem; 1997 Mar; 68(3):1173-82. PubMed ID: 9048764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: relevance to Parkinson's disease.
    Zeevalk GD; Manzino L; Sonsalla PK; Bernard LP
    Exp Neurol; 2007 Feb; 203(2):512-20. PubMed ID: 17049515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment with the spin-trap agent alpha-phenyl-N-tert-butyl nitrone does not enhance the survival of embryonic or adult dopamine neurons.
    Karlsson J; Emgârd M; Rosenblad C; Brundin P
    Brain Res; 1998 Sep; 805(1-2):155-68. PubMed ID: 9733957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of glutathione in dopaminergic neuronal survival.
    Nakamura K; Wang W; Kang UJ
    J Neurochem; 1997 Nov; 69(5):1850-8. PubMed ID: 9349527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.