These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9523769)

  • 1. The influence of restraint on blood pressure in the rat.
    Irvine RJ; White J; Chan R
    J Pharmacol Toxicol Methods; 1997 Nov; 38(3):157-62. PubMed ID: 9523769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dipeptidyl peptidase iv inhibition on arterial blood pressure.
    Jackson EK; Dubinion JH; Mi Z
    Clin Exp Pharmacol Physiol; 2008 Jan; 35(1):29-34. PubMed ID: 18047624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian rhythms of blood pressure, heart rate, and locomotor activity in spontaneously hypertensive rats as measured with radio-telemetry.
    van den Buuse M
    Physiol Behav; 1994 Apr; 55(4):783-7. PubMed ID: 8190809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telemetry for cardiovascular monitoring in a pharmacological study: new approaches to data analysis.
    Anderson NH; Devlin AM; Graham D; Morton JJ; Hamilton CA; Reid JL; Schork NJ; Dominiczak AF
    Hypertension; 1999 Jan; 33(1 Pt 2):248-55. PubMed ID: 9931112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative effects of hydralazine and captopril on the cardiovascular changes in spontaneously hypertensive rats.
    Limas C; Westrum B; Limas CJ
    Am J Pathol; 1984 Dec; 117(3):360-71. PubMed ID: 6391187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in aortic levels of tropoelastin mRNA following treatment of rats with the antihypertensive drugs captopril and hydralazine.
    Alden SM; Pierce RA; Tozzi CA; Mackenzie JW; Deak SB; Boyd CD
    J Surg Res; 1991 Dec; 51(6):491-4. PubMed ID: 1943085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antihypertensive treatment improves endothelium-dependent hyperpolarization in the mesenteric artery of spontaneously hypertensive rats.
    Onaka U; Fujii K; Abe I; Fujishima M
    Circulation; 1998 Jul; 98(2):175-82. PubMed ID: 9679724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of antihypertensive drugs on rat tissue antioxidant enzyme activities and lipid peroxidation levels.
    Cabell KS; Ma L; Johnson P
    Biochem Pharmacol; 1997 Jul; 54(1):133-41. PubMed ID: 9296359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of circadian blood pressure and heart rate variability by five different antihypertensive agents in spontaneously hypertensive rats.
    Janssen BJ; Tyssen CM; Struyker-Boudier HA
    J Cardiovasc Pharmacol; 1991 Mar; 17(3):494-503. PubMed ID: 1711613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal vascular responses to angiotensin II in conscious spontaneously hypertensive and normotensive rats.
    Kost CK; Li P; Williams DS; Jackson EK
    J Cardiovasc Pharmacol; 1998 Jun; 31(6):854-61. PubMed ID: 9641469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of an antihypertensive vasodilator, pinacidil, on regional blood flow in conscious spontaneously hypertensive rats.
    Kimura S; Fujioka S; Fukui K; Tamaki T; Iwao H; Abe Y
    J Pharmacobiodyn; 1988 Jun; 11(6):430-7. PubMed ID: 3171884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of serotonin1A receptors in cardiovascular responses to stress: a radio-telemetry study in four rat strains.
    van den Buuse M; Wegener N
    Eur J Pharmacol; 2005 Jan; 507(1-3):187-98. PubMed ID: 15659309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gender differences in blood pressure and heart rate in spontaneously hypertensive and Wistar-Kyoto rats.
    Maris ME; Melchert RB; Joseph J; Kennedy RH
    Clin Exp Pharmacol Physiol; 2005; 32(1-2):35-9. PubMed ID: 15730432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blockade of angiotensin II provides additional benefits in hypertension- and ageing-related cardiac and vascular dysfunctions beyond its blood pressure-lowering effects.
    Demirci B; McKeown PP; Bayraktutan U
    J Hypertens; 2005 Dec; 23(12):2219-27. PubMed ID: 16269964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. POMC biosynthesis in the intermediate lobe of the spontaneously hypertensive rat.
    Felder RA; Garland DS
    Am J Hypertens; 1989 Aug; 2(8):618-24. PubMed ID: 2550032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-dependent differences of restraint stress-induced hypertension in WKY and SHR.
    Grundt A; Grundt C; Gorbey S; Thomas MA; Lemmer B
    Physiol Behav; 2009 Jun; 97(3-4):341-6. PubMed ID: 19268675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal nicotinic receptor expression in spontaneously hypertensive rats.
    Khan IM; Youngblood KL; Printz MP; Yaksh TL; Taylor P
    Hypertension; 1996 Dec; 28(6):1093-9. PubMed ID: 8952602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood pressure and age-dependent changes of endothelium-dependent tension oscillations in different strains of spontaneously hypertensive rats.
    Shimamura K; Matsuda K; Sekiguchi F; Sunano S
    J Smooth Muscle Res; 1996 Aug; 32(4):145-54. PubMed ID: 8910252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin-converting enzyme and angiotensin II receptor subtype 1 inhibitors restitute hypertensive internal anal sphincter in the spontaneously hypertensive rats.
    De Godoy MA; Rattan S
    J Pharmacol Exp Ther; 2006 Aug; 318(2):725-34. PubMed ID: 16648368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximal and distal pulse pressure after acute antihypertensive vasodilating drugs in Wistar-Kyoto and spontaneously hypertensive rats.
    Tsoucaris D; Benetos A; Legrand M; London GM; Safar ME
    J Hypertens; 1995 Feb; 13(2):243-9. PubMed ID: 7615955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.