These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9524249)

  • 61. An anti-apoptotic protein, Hax-1, inhibits the HIV-1 rev function by altering its sub-cellular localization.
    Modem S; Reddy TR
    J Cell Physiol; 2008 Jan; 214(1):14-9. PubMed ID: 17929250
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Inhibition of HIV-1 Rev-RRE interaction by diphenylfuran derivatives.
    Ratmeyer L; Zapp ML; Green MR; Vinayak R; Kumar A; Boykin DW; Wilson WD
    Biochemistry; 1996 Oct; 35(42):13689-96. PubMed ID: 8885849
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins.
    Pritchard CE; Grasby JA; Hamy F; Zacharek AM; Singh M; Karn J; Gait MJ
    Nucleic Acids Res; 1994 Jul; 22(13):2592-600. PubMed ID: 8041622
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bacteriophage p22 portal vertex formation in vivo.
    Moore SD; Prevelige PE
    J Mol Biol; 2002 Feb; 315(5):975-94. PubMed ID: 11827470
    [TBL] [Abstract][Full Text] [Related]  

  • 65. 'Let the phage do the work': using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants.
    Teschke CM; Parent KN
    Virology; 2010 Jun; 401(2):119-30. PubMed ID: 20236676
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nucleotide sequence of the head assembly gene cluster of bacteriophage L and decoration protein characterization.
    Gilcrease EB; Winn-Stapley DA; Hewitt FC; Joss L; Casjens SR
    J Bacteriol; 2005 Mar; 187(6):2050-7. PubMed ID: 15743953
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Regulation of expression of human immunodeficiency virus.
    Pavlakis GN; Felber BK
    New Biol; 1990 Jan; 2(1):20-31. PubMed ID: 2078551
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex.
    Battiste JL; Mao H; Rao NS; Tan R; Muhandiram DR; Kay LE; Frankel AD; Williamson JR
    Science; 1996 Sep; 273(5281):1547-51. PubMed ID: 8703216
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identification of related genes in phages phi 80 and P22 whose products are inhibitory for phage growth in Escherichia coli IHF mutants.
    Henthorn KS; Friedman DI
    J Bacteriol; 1995 Jun; 177(11):3185-90. PubMed ID: 7768817
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Selection of high affinity RNA ligands to the bacteriophage R17 coat protein.
    Schneider D; Tuerk C; Gold L
    J Mol Biol; 1992 Dec; 228(3):862-9. PubMed ID: 1469719
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Rapid genetic analysis of RNA-protein interactions by translational repression in Escherichia coli.
    Jain C; Belasco JG
    Methods Enzymol; 2000; 318():309-32. PubMed ID: 10889996
    [No Abstract]   [Full Text] [Related]  

  • 72. An in Vivo Binding Assay for RNA-Binding Proteins Based on Repression of a Reporter Gene.
    Katz N; Cohen R; Solomon O; Kaufmann B; Atar O; Yakhini Z; Goldberg S; Amit R
    ACS Synth Biol; 2018 Dec; 7(12):2765-2774. PubMed ID: 30408420
    [TBL] [Abstract][Full Text] [Related]  

  • 73. RNA challenge phages as genetic tools for study of RNA-ligand interactions.
    Celander DW; Bennett KA; Fouts DE; Seitz EA; True HL
    Methods Enzymol; 2000; 318():332-50. PubMed ID: 10889997
    [No Abstract]   [Full Text] [Related]  

  • 74. Single amino acid substitutions globally suppress the folding defects of temperature-sensitive folding mutants of phage P22 coat protein.
    Aramli LA; Teschke CM
    J Biol Chem; 1999 Aug; 274(32):22217-24. PubMed ID: 10428787
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Regulation of gene expression in Salmonella phage P22. II. Regulation of expression of late functions.
    Prell HH
    Mol Gen Genet; 1975; 136(4):351-60. PubMed ID: 16095002
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Failure of translational repression in the phage f2 op3 mutant is not due to an altered coat protein-RNA interaction.
    Carey J; Cameron V; Krug M; de Haseth PL; Uhlenbeck OC
    J Biol Chem; 1984 Jan; 259(1):20-2. PubMed ID: 6706931
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Lateral transduction is inherent to the life cycle of the archetypical Salmonella phage P22.
    Fillol-Salom A; Bacigalupe R; Humphrey S; Chiang YN; Chen J; Penadés JR
    Nat Commun; 2021 Nov; 12(1):6510. PubMed ID: 34751192
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Understanding viral partitioning in two-phase aqueous nonionic micellar systems: 1. Role of attractive interactions between viruses and micelles.
    Kamei DT; Liu CL; Haase-Pettingell C; King JA; Wang DI; Blankschtein D
    Biotechnol Bioeng; 2002 Apr; 78(2):190-202. PubMed ID: 11870610
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Viral spread within ageing bacterial populations.
    Ramírez E; Villaverde A
    Gene; 1997 Nov; 202(1-2):147-9. PubMed ID: 9427558
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Probes and drugs that interfere with protein translation via targeting to the RNAs or RNA-protein interactions.
    Cheng MS; Su MX; Wang MX; Sun MZ; Ou TM
    Methods; 2019 Sep; 167():124-133. PubMed ID: 31185274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.