These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 9525045)
1. Copper (II) complexation in northern California rice field waters: an investigation using differential pulse anodic and cathodic stripping voltammetry. Witter AE; Mabury SA; Jones AD Sci Total Environ; 1998 Mar; 212(1):21-37. PubMed ID: 9525045 [TBL] [Abstract][Full Text] [Related]
2. Comparison of copper speciation in estuarine water measured using analytical voltammetry and supported liquid membrane techniques. Ndungu K; Hurst MP; Bruland KW Environ Sci Technol; 2005 May; 39(9):3166-75. PubMed ID: 15926567 [TBL] [Abstract][Full Text] [Related]
3. Effect of the deposition potential on the voltammetric determination of complexing ligand concentrations in sea-water. van den Berg CM Analyst; 1992 Mar; 117(3):589-93. PubMed ID: 1580406 [TBL] [Abstract][Full Text] [Related]
4. Copper speciation by competing ligand exchange method using differential pulse anodic stripping voltammetry with ethylenediaminetetraacetic acid (EDTA) as competing ligand. Wang R; Chakrabarti CL Anal Chim Acta; 2008 May; 614(2):153-60. PubMed ID: 18420045 [TBL] [Abstract][Full Text] [Related]
5. Organic Copper Speciation by Anodic Stripping Voltammetry in Estuarine Waters With High Dissolved Organic Matter. Pađan J; Marcinek S; Cindrić AM; Santinelli C; Retelletti Brogi S; Radakovitch O; Garnier C; Omanović D Front Chem; 2020; 8():628749. PubMed ID: 33634075 [TBL] [Abstract][Full Text] [Related]
6. Assessment of accuracy and precision in speciation analysis by competitive ligand equilibration-cathodic stripping voltammetry (CLE-CSV) and application to Antarctic samples. Monticelli D; Dossi C; Castelletti A Anal Chim Acta; 2010 Aug; 675(2):116-24. PubMed ID: 20800722 [TBL] [Abstract][Full Text] [Related]
7. Comparison of copper speciation in coastal marine waters measured using analytical voltammetry and diffusion gradient in thin-film techniques. Twiss MR; Moffett JW Environ Sci Technol; 2002 Mar; 36(5):1061-8. PubMed ID: 11917992 [TBL] [Abstract][Full Text] [Related]
8. Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry. Ndungu K Environ Sci Technol; 2012 Jul; 46(14):7644-52. PubMed ID: 22724636 [TBL] [Abstract][Full Text] [Related]
9. Determination of copper speciation in highway stormwater runoff using competitive ligand exchange - Adsorptive cathodic stripping voltammetry. Nason JA; Sprick MS; Bloomquist DJ Water Res; 2012 Nov; 46(17):5788-5798. PubMed ID: 22921394 [TBL] [Abstract][Full Text] [Related]
10. Assessment of copper bioavailability and toxicity in vineyard runoff waters by DPASV and algal bioassay. Devez A; Gomez E; Gilbin R; Elbaz-Poulichet F; Persin F; Andrieux P; Casellas C Sci Total Environ; 2005 Sep; 348(1-3):82-92. PubMed ID: 16162315 [TBL] [Abstract][Full Text] [Related]
11. Spatial variability of total dissolved copper and copper speciation in the inshore waters of Bermuda. Oldham VE; Swenson MM; Buck KN Mar Pollut Bull; 2014 Feb; 79(1-2):314-20. PubMed ID: 24461699 [TBL] [Abstract][Full Text] [Related]
12. Optimization of square wave anodic stripping voltammetry (SWASV) for the simultaneous determination of Cd, Pb, and Cu in seawater and comparison with differential pulse anodic stripping voltammetry (DPASV). Truzzi C; Lambertucci L; Gambini G; Scarponi G Ann Chim; 2002 Mar; 92(3):313-26. PubMed ID: 12025515 [TBL] [Abstract][Full Text] [Related]
13. The use of Nafion-coated thin mercury film electrodes for the determination of the dissolved copper speciation in estuarine water. Hurst MP; Bruland KW Anal Chim Acta; 2005 Aug; 546(1):68-78. PubMed ID: 29569557 [TBL] [Abstract][Full Text] [Related]
14. Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean. Jakuba RW; Moffett JW; Saito MA Anal Chim Acta; 2008 May; 614(2):143-52. PubMed ID: 18420044 [TBL] [Abstract][Full Text] [Related]
15. Predicting Copper Speciation in Estuarine Waters-Is Dissolved Organic Carbon a Good Proxy for the Presence of Organic Ligands? Pearson HB; Comber SD; Braungardt C; Worsfold PJ Environ Sci Technol; 2017 Feb; 51(4):2206-2216. PubMed ID: 28098987 [TBL] [Abstract][Full Text] [Related]
16. The effect of pH, ion strength and reactant content on the complexation of Cu2+ by various natural organic ligands from water and soil in Hong Kong. Cao J; Lam KC; Dawson RW; Liu WX; Tao S Chemosphere; 2004 Jan; 54(4):507-14. PubMed ID: 14581053 [TBL] [Abstract][Full Text] [Related]
17. Speciation of trace metals in natural waters: the influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper. Louis Y; Cmuk P; Omanović D; Garnier C; Lenoble V; Mounier S; Pizeta I Anal Chim Acta; 2008 Jan; 606(1):37-44. PubMed ID: 18068768 [TBL] [Abstract][Full Text] [Related]
18. Determination of ultra-trace amounts of silver in water by differential pulse anodic stripping voltammetry using a new modified carbon paste electrode. El-Mai H; Espada-Bellido E; Stitou M; García-Vargas M; Galindo-Riaño MD Talanta; 2016 May; 151():14-22. PubMed ID: 26946005 [TBL] [Abstract][Full Text] [Related]
19. Strong colloidal and dissolved organic ligands binding copper and zinc in rivers. Hoffmann SR; Shafer MM; Armstrong DE Environ Sci Technol; 2007 Oct; 41(20):6996-7002. PubMed ID: 17993139 [TBL] [Abstract][Full Text] [Related]
20. Strong copper-binding behavior of terrestrial humic substances in seawater. Kogut MB; Voelker BM Environ Sci Technol; 2001 Mar; 35(6):1149-56. PubMed ID: 11347927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]