These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 9525772)

  • 1. A unified method for calculating the center of pressure during wheelchair propulsion.
    VanSickle DP; Cooper RA; Boninger ML; Robertson RN; Shimada SD
    Ann Biomed Eng; 1998; 26(2):328-36. PubMed ID: 9525772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional pushrim forces during two speeds of wheelchair propulsion.
    Boninger ML; Cooper RA; Robertson RN; Shimada SD
    Am J Phys Med Rehabil; 1997; 76(5):420-6. PubMed ID: 9354497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shoulder and elbow motion during two speeds of wheelchair propulsion: a description using a local coordinate system.
    Boninger ML; Cooper RA; Shimada SD; Rudy TE
    Spinal Cord; 1998 Jun; 36(6):418-26. PubMed ID: 9648199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manual wheelchair pushrim biomechanics and axle position.
    Boninger ML; Baldwin M; Cooper RA; Koontz A; Chan L
    Arch Phys Med Rehabil; 2000 May; 81(5):608-13. PubMed ID: 10807100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wrist biomechanics during two speeds of wheelchair propulsion: an analysis using a local coordinate system.
    Boninger ML; Cooper RA; Robertson RN; Rudy TE
    Arch Phys Med Rehabil; 1997 Apr; 78(4):364-72. PubMed ID: 9111455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion.
    Boninger ML; Souza AL; Cooper RA; Fitzgerald SG; Koontz AM; Fay BT
    Arch Phys Med Rehabil; 2002 May; 83(5):718-23. PubMed ID: 11994814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic characterization of wheelchair propulsion.
    Shimada SD; Robertson RN; Bonninger ML; Cooper RA
    J Rehabil Res Dev; 1998 Jun; 35(2):210-8. PubMed ID: 9651893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moment generation in wheelchair propulsion.
    Guo LY; Zhao KD; Su FC; An KN
    Proc Inst Mech Eng H; 2003; 217(5):405-13. PubMed ID: 14558653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shoulder pain and jerk during recovery phase of manual wheelchair propulsion.
    Jayaraman C; Beck CL; Sosnoff JJ
    J Biomech; 2015 Nov; 48(14):3937-44. PubMed ID: 26472307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shoulder magnetic resonance imaging abnormalities, wheelchair propulsion, and gender.
    Boninger ML; Dicianno BE; Cooper RA; Towers JD; Koontz AM; Souza AL
    Arch Phys Med Rehabil; 2003 Nov; 84(11):1615-20. PubMed ID: 14639560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion.
    van der Helm FC; Veeger HE
    J Biomech; 1996 Jan; 29(1):39-52. PubMed ID: 8839016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
    Lin HT; Su FC; Wu HW; An KN
    Proc Inst Mech Eng H; 2004; 218(4):213-21. PubMed ID: 15376723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A kinetic analysis of trained wheelchair racers during two speeds of propulsion.
    Goosey-Tolfrey VL; Fowler NE; Campbell IG; Iwnicki SD
    Med Eng Phys; 2001 May; 23(4):259-66. PubMed ID: 11427363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion.
    Kloosterman MG; Eising H; Schaake L; Buurke JH; Rietman JS
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):428-35. PubMed ID: 22209484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics and strength of manual wheelchair users.
    Ambrosio F; Boninger ML; Souza AL; Fitzgerald SG; Koontz AM; Cooper RA
    J Spinal Cord Med; 2005; 28(5):407-14. PubMed ID: 16869087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.
    Lenton JP; van der Woude L; Fowler N; Nicholson G; Tolfrey K; Goosey-Tolfrey V
    Int J Sports Med; 2014 Mar; 35(3):223-31. PubMed ID: 23945971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for determining three-dimensional wheelchair pushrim forces and moments: a technical note.
    Cooper RA; Robertson RN; VanSickle DP; Boninger ML; Shimada SD
    J Rehabil Res Dev; 1997 Apr; 34(2):162-70. PubMed ID: 9108343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Projection of the point of force application onto a palmar plane of the hand during wheelchair propulsion.
    Cooper RA; Robertson RN; VanSickle DP; Boninger ML; Shimada SD
    IEEE Trans Rehabil Eng; 1996 Sep; 4(3):133-42. PubMed ID: 8800216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):255-62. PubMed ID: 22071430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.