These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 9525854)

  • 1. Structural conservation in prokaryotic and eukaryotic potassium channels.
    MacKinnon R; Cohen SL; Kuo A; Lee A; Chait BT
    Science; 1998 Apr; 280(5360):106-9. PubMed ID: 9525854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels.
    Gao YD; Garcia ML
    Proteins; 2003 Aug; 52(2):146-54. PubMed ID: 12833539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition.
    Goldstein SA; Pheasant DJ; Miller C
    Neuron; 1994 Jun; 12(6):1377-88. PubMed ID: 7516689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom.
    Garcia ML; Garcia-Calvo M; Hidalgo P; Lee A; MacKinnon R
    Biochemistry; 1994 Jun; 33(22):6834-9. PubMed ID: 8204618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification, characterization, and synthesis of an inward-rectifier K+ channel inhibitor from scorpion venom.
    Lu Z; MacKinnon R
    Biochemistry; 1997 Jun; 36(23):6936-40. PubMed ID: 9188688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular effects of some potassium channel blocking toxins from the venom of the scorpion Leiurus quinquestriatus hebreus.
    Marshall DL; Vatanpour H; Harvey AL; Boyot P; Pinkasfeld S; Doljansky Y; Bouet F; Ménez A
    Toxicon; 1994 Nov; 32(11):1433-43. PubMed ID: 7533951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic distance geometry in a K+ channel vestibule.
    Stocker M; Miller C
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9509-13. PubMed ID: 7524078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Structural basis of the K+ channel inhibition by pore-blocking toxins, revealed by NMR].
    Takeuchi K; Shimada I
    Tanpakushitsu Kakusan Koso; 2005 Aug; 50(10 Suppl):1297-302. PubMed ID: 16104598
    [No Abstract]   [Full Text] [Related]  

  • 10. Exploring structural features of the interaction between the scorpion toxinCnErg1 and ERG K+ channels.
    Frénal K; Xu CQ; Wolff N; Wecker K; Gurrola GB; Zhu SY; Chi CW; Possani LD; Tytgat J; Delepierre M
    Proteins; 2004 Aug; 56(2):367-75. PubMed ID: 15211519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of the potassium channel: molecular basis of K+ conduction and selectivity.
    Doyle DA; Morais Cabral J; Pfuetzner RA; Kuo A; Gulbis JM; Cohen SL; Chait BT; MacKinnon R
    Science; 1998 Apr; 280(5360):69-77. PubMed ID: 9525859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis.
    Ranganathan R; Lewis JH; MacKinnon R
    Neuron; 1996 Jan; 16(1):131-9. PubMed ID: 8562077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of maurotoxin action on Shaker potassium channels.
    Avdonin V; Nolan B; Sabatier JM; De Waard M; Hoshi T
    Biophys J; 2000 Aug; 79(2):776-87. PubMed ID: 10920011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR.
    Lange A; Giller K; Hornig S; Martin-Eauclaire MF; Pongs O; Becker S; Baldus M
    Nature; 2006 Apr; 440(7086):959-62. PubMed ID: 16612389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor.
    MacKinnon R; Heginbotham L; Abramson T
    Neuron; 1990 Dec; 5(6):767-71. PubMed ID: 1702643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor.
    Hidalgo P; MacKinnon R
    Science; 1995 Apr; 268(5208):307-10. PubMed ID: 7716527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charybdotoxin and its effects on potassium channels.
    Garcia ML; Knaus HG; Munujos P; Slaughter RS; Kaczorowski GJ
    Am J Physiol; 1995 Jul; 269(1 Pt 1):C1-10. PubMed ID: 7543240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of toxins Pi2 and Pi3 on human T lymphocyte Kv1.3 channels: the role of Glu7 and Lys24.
    Péter M; Varga Z; Hajdu P; Gáspár R; Damjanovich S; Horjales E; Possani LD; Panyi G
    J Membr Biol; 2001 Jan; 179(1):13-25. PubMed ID: 11155206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intimations of K+ channel structure from a complete functional map of the molecular surface of charybdotoxin.
    Stampe P; Kolmakova-Partensky L; Miller C
    Biochemistry; 1994 Jan; 33(2):443-50. PubMed ID: 7506933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors.
    Zhou M; Morais-Cabral JH; Mann S; MacKinnon R
    Nature; 2001 Jun; 411(6838):657-61. PubMed ID: 11395760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.