BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 9525876)

  • 21. The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells.
    Niedernhofer LJ; Essers J; Weeda G; Beverloo B; de Wit J; Muijtjens M; Odijk H; Hoeijmakers JH; Kanaar R
    EMBO J; 2001 Nov; 20(22):6540-9. PubMed ID: 11707424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Fanconi anemia protein, FANCG, binds to the ERCC1-XPF endonuclease via its tetratricopeptide repeats and the central domain of ERCC1.
    Wang C; Lambert MW
    Biochemistry; 2010 Jul; 49(26):5560-9. PubMed ID: 20518486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination.
    Adair GM; Rolig RL; Moore-Faver D; Zabelshansky M; Wilson JH; Nairn RS
    EMBO J; 2000 Oct; 19(20):5552-61. PubMed ID: 11032822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease.
    Tomkinson AE; Bardwell AJ; Bardwell L; Tappe NJ; Friedberg EC
    Nature; 1993 Apr; 362(6423):860-2. PubMed ID: 8479526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. XPF knockout via CRISPR/Cas9 reveals that ERCC1 is retained in the cytoplasm without its heterodimer partner XPF.
    Lehmann J; Seebode C; Smolorz S; Schubert S; Emmert S
    Cell Mol Life Sci; 2017 Jun; 74(11):2081-2094. PubMed ID: 28130555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ERCC1 and ERCC4 (XPF) genes and gene products.
    Manandhar M; Boulware KS; Wood RD
    Gene; 2015 Sep; 569(2):153-61. PubMed ID: 26074087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways.
    Orelli B; McClendon TB; Tsodikov OV; Ellenberger T; Niedernhofer LJ; Schärer OD
    J Biol Chem; 2010 Feb; 285(6):3705-3712. PubMed ID: 19940136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Processing of a psoralen DNA interstrand cross-link by XPF-ERCC1 complex in vitro.
    Fisher LA; Bessho M; Bessho T
    J Biol Chem; 2008 Jan; 283(3):1275-1281. PubMed ID: 18006494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acetylation of XPF by TIP60 facilitates XPF-ERCC1 complex assembly and activation.
    Wang J; He H; Chen B; Jiang G; Cao L; Jiang H; Zhang G; Chen J; Huang J; Yang B; Zhou C; Liu T
    Nat Commun; 2020 Feb; 11(1):786. PubMed ID: 32034146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer-aided drug design of small molecule inhibitors of the ERCC1-XPF protein-protein interaction.
    Gentile F; Elmenoufy AH; Ciniero G; Jay D; Karimi-Busheri F; Barakat KH; Weinfeld M; West FG; Tuszynski JA
    Chem Biol Drug Des; 2020 Apr; 95(4):460-471. PubMed ID: 31891209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The formation of UV-induced chromosome aberrations involves ERCC1 and XPF but not other nucleotide excision repair genes.
    Chipchase MD; Melton DW
    DNA Repair (Amst); 2002 Apr; 1(4):335-40. PubMed ID: 12509251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of reactive oxygen species-induced 3'-blocked ends by XPF-ERCC1.
    Fisher LA; Samson L; Bessho T
    Chem Res Toxicol; 2011 Nov; 24(11):1876-81. PubMed ID: 22007867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repair synthesis step involving ERCC1-XPF participates in DNA repair of the Top1-DNA damage complex.
    Takahata C; Masuda Y; Takedachi A; Tanaka K; Iwai S; Kuraoka I
    Carcinogenesis; 2015 Aug; 36(8):841-51. PubMed ID: 26025908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The 3'-flap endonuclease XPF-ERCC1 promotes alternative end joining and chromosomal translocation during B cell class switching.
    Bai W; Zhu G; Xu J; Chen P; Meng F; Xue H; Chen C; Dong J
    Cell Rep; 2021 Sep; 36(13):109756. PubMed ID: 34592150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ERCC1/XPF endonuclease is required for completion of homologous recombination at DNA replication forks stalled by inter-strand cross-links.
    Al-Minawi AZ; Lee YF; Håkansson D; Johansson F; Lundin C; Saleh-Gohari N; Schultz N; Jenssen D; Bryant HE; Meuth M; Hinz JM; Helleday T
    Nucleic Acids Res; 2009 Oct; 37(19):6400-13. PubMed ID: 19713438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif.
    Enzlin JH; Schärer OD
    EMBO J; 2002 Apr; 21(8):2045-53. PubMed ID: 11953324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells.
    Sargent RG; Meservy JL; Perkins BD; Kilburn AE; Intody Z; Adair GM; Nairn RS; Wilson JH
    Nucleic Acids Res; 2000 Oct; 28(19):3771-8. PubMed ID: 11000269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks.
    Niedernhofer LJ; Odijk H; Budzowska M; van Drunen E; Maas A; Theil AF; de Wit J; Jaspers NG; Beverloo HB; Hoeijmakers JH; Kanaar R
    Mol Cell Biol; 2004 Jul; 24(13):5776-87. PubMed ID: 15199134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Action of DNA repair endonuclease ERCC1/XPF in living cells.
    Houtsmuller AB; Rademakers S; Nigg AL; Hoogstraten D; Hoeijmakers JH; Vermeulen W
    Science; 1999 May; 284(5416):958-61. PubMed ID: 10320375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interstrand crosslink repair: can XPF-ERCC1 be let off the hook?
    Bergstralh DT; Sekelsky J
    Trends Genet; 2008 Feb; 24(2):70-6. PubMed ID: 18192062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.