These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9525878)

  • 1. Modulation of oxidative phosphorylation by Mg2+ in rat heart mitochondria.
    Rodríguez-Zavala JS; Moreno-Sánchez R
    J Biol Chem; 1998 Apr; 273(14):7850-5. PubMed ID: 9525878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mg2+ control of respiration in isolated rat liver mitochondria.
    Panov A; Scarpa A
    Biochemistry; 1996 Oct; 35(39):12849-56. PubMed ID: 8841128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of 2-oxoglutarate dehydrogenase complex by inorganic phosphate, Mg(2+), and other effectors.
    Rodríguez-Zavala JS; Pardo JP; Moreno-Sánchez R
    Arch Biochem Biophys; 2000 Jul; 379(1):78-84. PubMed ID: 10864444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria.
    Denton RM; McCormack JG; Edgell NJ
    Biochem J; 1980 Jul; 190(1):107-17. PubMed ID: 6160850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of 2-oxoglutarate dehydrogenase and oxidative phosphorylation by Ca2+ in pancreas and adrenal cortex mitochondria.
    Moreno-Sánchez R; Rodríguez-Enríquez S; Cuéllar A; Corona N
    Arch Biochem Biophys; 1995 Jun; 319(2):432-44. PubMed ID: 7786025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate.
    Hansford RG; Castro F
    Biochem J; 1981 Sep; 198(3):525-33. PubMed ID: 6275851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive dehydrogenases within intact rat-kidney mitochondria.
    McCormack JG; Bromidge ES; Dawes NJ
    Biochim Biophys Acta; 1988 Jul; 934(3):282-92. PubMed ID: 2840116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria.
    McCormack JG
    Biochem J; 1985 Nov; 231(3):581-95. PubMed ID: 3000355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix free Mg2+ changes with metabolic state in isolated heart mitochondria.
    Jung DW; Apel L; Brierley GP
    Biochemistry; 1990 May; 29(17):4121-8. PubMed ID: 2361136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of trimetazidine on the calcium transport and oxidative phosphorylation of isolated rat heart mitochondria.
    Guarnieri C; Finelli C; Zini M; Muscari C
    Basic Res Cardiol; 1997 Apr; 92(2):90-5. PubMed ID: 9166988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix magnesium and the permeability of heart mitochondria to potassium ion.
    Jung DW; Brierley GP
    J Biol Chem; 1986 May; 261(14):6408-15. PubMed ID: 3084482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition and stimulation of respiration-linked Mg2+ efflux in rat heart mitochondria.
    Akerman KE
    J Bioenerg Biomembr; 1981 Aug; 13(3-4):133-9. PubMed ID: 6796573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent modulation of the activity of alpha-ketoglutarate dehydrogenase complex by Ca2+ and Mg2+.
    Panov A; Scarpa A
    Biochemistry; 1996 Jan; 35(2):427-32. PubMed ID: 8555212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the relationship between matrix free Mg2+ concentration and total Mg2+ in heart mitochondria.
    Jung DW; Panzeter E; Baysal K; Brierley GP
    Biochim Biophys Acta; 1997 Jul; 1320(3):310-20. PubMed ID: 9230923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat.
    McCormack JG; Denton RM
    Biochem J; 1980 Jul; 190(1):95-105. PubMed ID: 6778477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that adrenaline activates key oxidative enzymes in rat liver by increasing intramitochondrial [Ca2+].
    McCormack JG
    FEBS Lett; 1985 Jan; 180(2):259-64. PubMed ID: 3917939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in 2-oxoglutarate dehydrogenase regulation in liver and kidney.
    Smith BC; Clotfelter LA; Cheung JY; LaNoue KF
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):819-26. PubMed ID: 1352447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes.
    Leyssens A; Nowicky AV; Patterson L; Crompton M; Duchen MR
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):111-28. PubMed ID: 8910200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation by magnesium of potato tuber mitochondrial respiratory activities.
    Vicente JA; Madeira VM; Vercesi AE
    J Bioenerg Biomembr; 2004 Dec; 36(6):525-31. PubMed ID: 15692731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+.
    McCormack JG; Denton RM
    Biochem J; 1984 Feb; 218(1):235-47. PubMed ID: 6424656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.