BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 9525901)

  • 1. Expression of CD38 increases intracellular calcium concentration and reduces doubling time in HeLa and 3T3 cells.
    Zocchi E; Daga A; Usai C; Franco L; Guida L; Bruzzone S; Costa A; Marchetti C; De Flora A
    J Biol Chem; 1998 Apr; 273(14):8017-24. PubMed ID: 9525901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts.
    Franco L; Zocchi E; Usai C; Guida L; Bruzzone S; Costa A; De Flora A
    J Biol Chem; 2001 Jun; 276(24):21642-8. PubMed ID: 11274199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-induced internalization of CD38 results in intracellular Ca2+ mobilization: role of NAD+ transport across cell membranes.
    Zocchi E; Usai C; Guida L; Franco L; Bruzzone S; Passalacqua M; De Flora A
    FASEB J; 1999 Feb; 13(2):273-83. PubMed ID: 9973315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranes.
    Franco L; Guida L; Bruzzone S; Zocchi E; Usai C; De Flora A
    FASEB J; 1998 Nov; 12(14):1507-20. PubMed ID: 9806760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectocellular CD38-catalyzed synthesis and intracellular Ca(2+)-mobilizing activity of cyclic ADP-ribose.
    De Flora A; Franco L; Guida L; Bruzzone S; Zocchi E
    Cell Biochem Biophys; 1998; 28(1):45-62. PubMed ID: 9386892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ectocellular CD38-catalyzed synthesis and intracellular Ca2+-signalling activity of cyclic ADP-ribose in T-lymphocytes are not functionally related.
    da Silva CP; Schweitzer K; Heyer P; Malavasi F; Mayr GW; Guse AH
    FEBS Lett; 1998 Nov; 439(3):291-6. PubMed ID: 9845340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CD38/cyclic ADP-ribose system: a topological paradox.
    De Flora A; Guida L; Franco L; Zocchi E
    Int J Biochem Cell Biol; 1997 Oct; 29(10):1149-66. PubMed ID: 9438379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum.
    De Flora A; Guida L; Franco L; Zocchi E; Pestarino M; Usai C; Marchetti C; Fedele E; Fontana G; Raiteri M
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):665-71. PubMed ID: 8973582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-restricted CD38-connexin 43 cross-talk affects NAD+ and cyclic ADP-ribose metabolism and regulates intracellular calcium in 3T3 fibroblasts.
    Bruzzone S; Franco L; Guida L; Zocchi E; Contini P; Bisso A; Usai C; De Flora A
    J Biol Chem; 2001 Dec; 276(51):48300-8. PubMed ID: 11602597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estrogen increases CD38 gene expression and leads to differential regulation of adenosine diphosphate (ADP)-ribosyl cyclase and cyclic ADP-ribose hydrolase activities in rat myometrium.
    Dogan S; White TA; Deshpande DA; Murtaugh MP; Walseth TF; Kannan MS
    Biol Reprod; 2002 Mar; 66(3):596-602. PubMed ID: 11870063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibrative and concentrative nucleoside transporters mediate influx of extracellular cyclic ADP-ribose into 3T3 murine fibroblasts.
    Guida L; Bruzzone S; Sturla L; Franco L; Zocchi E; De Flora A
    J Biol Chem; 2002 Dec; 277(49):47097-105. PubMed ID: 12368285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of two classes of ADP-ribose transfer reactions in immune signaling.
    Han MK; Cho YS; Kim YS; Yim CY; Kim UH
    J Biol Chem; 2000 Jul; 275(27):20799-805. PubMed ID: 10777496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antidiabetic effect of a prodrug of cysteine, L-2-oxothiazolidine-4-carboxylic acid, through CD38 dimerization and internalization.
    Han MK; Kim SJ; Park YR; Shin YM; Park HJ; Park KJ; Park KH; Kim HK; Jang SI; An NH; Kim UH
    J Biol Chem; 2002 Feb; 277(7):5315-21. PubMed ID: 11679582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system.
    De Flora A; Zocchi E; Guida L; Franco L; Bruzzone S
    Ann N Y Acad Sci; 2004 Dec; 1028():176-91. PubMed ID: 15650244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimeric and tetrameric forms of catalytically active transmembrane CD38 in transfected HeLa cells.
    Bruzzone S; Guida L; Franco L; Zocchi E; Corte G; De Flora A
    FEBS Lett; 1998 Aug; 433(3):275-8. PubMed ID: 9744810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular NAD(+) induces calcium signaling and apoptosis in human osteoblastic cells.
    Romanello M; Padoan M; Franco L; Veronesi V; Moro L; D'Andrea P
    Biochem Biophys Res Commun; 2001 Aug; 285(5):1226-31. PubMed ID: 11478787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling.
    Cakir-Kiefer C; Muller-Steffner H; Oppenheimer N; Schuber F
    Biochem J; 2001 Sep; 358(Pt 2):399-406. PubMed ID: 11513738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD38/ADP-ribosyl cyclase: A new role in the regulation of osteoclastic bone resorption.
    Sun L; Adebanjo OA; Moonga BS; Corisdeo S; Anandatheerthavarada HK; Biswas G; Arakawa T; Hakeda Y; Koval A; Sodam B; Bevis PJ; Moser AJ; Lai FA; Epstein S; Troen BR; Kumegawa M; Zaidi M
    J Cell Biol; 1999 Sep; 146(5):1161-72. PubMed ID: 10477767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ["The CD38-cyclic ADP-ribose signal system": molecular mechanism and biological significance].
    Okamoto H
    Nihon Yakurigaku Zasshi; 1999 Sep; 114(3):131-9. PubMed ID: 10553576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic beta-cells.
    Takasawa S; Akiyama T; Nata K; Kuroki M; Tohgo A; Noguchi N; Kobayashi S; Kato I; Katada T; Okamoto H
    J Biol Chem; 1998 Jan; 273(5):2497-500. PubMed ID: 9446548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.