BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9526046)

  • 41. Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits.
    Ifuku K; Endo T; Shikanai T; Aro EM
    Plant Cell Physiol; 2011 Sep; 52(9):1560-8. PubMed ID: 21785130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of the NADH and NADPH-ferredoxin oxidoreductases in clostridia of the butyric group.
    Petitdemange H; Cherrier C; Raval R; Gay R
    Biochim Biophys Acta; 1976 Feb; 421(2):334-7. PubMed ID: 3218
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dissecting the Diphenylene Iodonium-Sensitive NAD(P)H:Quinone Oxidoreductase of Zucchini Plasma Membrane.
    Trost P; Foscarini S; Preger V; Bonora P; Vitale L; Pupillo P
    Plant Physiol; 1997 Jun; 114(2):737-746. PubMed ID: 12223742
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electron transport pathways in spinach chloroplasts. Reduction of the primary acceptor of photosystem II by reduced nicotinamide adenine dinucleotide phosphate in the dark.
    Mills JD; Crowther D; Slovacek RE; Hind G; McCarty RE
    Biochim Biophys Acta; 1979 Jul; 547(1):127-37. PubMed ID: 37900
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Association of glycolate oxidation with photosynthetic electron transport in plant and algal chloroplasts.
    Goyal A; Tolbert NE
    Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3319-24. PubMed ID: 11607648
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves.
    Geisler DA; Johansson FI; Svensson AS; Rasmusson AG
    BMC Plant Biol; 2004 May; 4():8. PubMed ID: 15140267
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas.
    Jans F; Mignolet E; Houyoux PA; Cardol P; Ghysels B; Cuiné S; Cournac L; Peltier G; Remacle C; Franck F
    Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20546-51. PubMed ID: 19074271
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The reduced state of the plastoquinone pool is required for chloroplast-mediated stomatal closure in response to calcium stimulation.
    Wang WH; He EM; Chen J; Guo Y; Chen J; Liu X; Zheng HL
    Plant J; 2016 Apr; 86(2):132-44. PubMed ID: 26945669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of NAD(P)H dehydrogenase-dependent cyclic electron transport around PSI by NaHSO₃ at low concentrations in tobacco chloroplasts.
    Wu Y; Zheng F; Ma W; Han Z; Gu Q; Shen Y; Mi H
    Plant Cell Physiol; 2011 Oct; 52(10):1734-43. PubMed ID: 21828103
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Association of ferredoxin-NADP oxidoreductase with the chloroplastic pyridine nucleotide dehydrogenase complex in barley leaves.
    Jose Quiles M ; Cuello J
    Plant Physiol; 1998 May; 117(1):235-44. PubMed ID: 9576793
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications.
    Savitch LV; Ivanov AG; Gudynaite-Savitch L; Huner NP; Simmonds J
    Plant Cell Physiol; 2011 Jun; 52(6):1042-54. PubMed ID: 21546369
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana.
    Grouneva I; Jakob T; Wilhelm C; Goss R
    Biochim Biophys Acta; 2009 Jul; 1787(7):929-38. PubMed ID: 19232316
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photosystem activity and state transitions of the photosynthetic apparatus in cyanobacterium Synechocystis PCC 6803 mutants with different redox state of the plastoquinone pool.
    Bolychevtseva YV; Kuzminov FI; Elanskaya IV; Gorbunov MY; Karapetyan NV
    Biochemistry (Mosc); 2015 Jan; 80(1):50-60. PubMed ID: 25754039
    [TBL] [Abstract][Full Text] [Related]  

  • 54. p-nitrosophenol reduction by liver cytosol from ADH-positive and -negative deermice (Peromyscus maniculatus).
    Dudley BF; Winston GW
    Arch Biochem Biophys; 1995 Feb; 316(2):879-85. PubMed ID: 7532387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The alternative respiratory pathway of the yeast Candida parapsilosis: oxidation of exogenous NAD(P)H.
    Camougrand NM; Cheyrou A; Henry MF; Guérin MG
    J Gen Microbiol; 1988 Dec; 134(12):3195-204. PubMed ID: 3269391
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The pathway of electron transfer in NADH:Q oxidoreductase.
    van Belzen R; Albracht SP
    Biochim Biophys Acta; 1989 May; 974(3):311-20. PubMed ID: 2499359
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evidence for a Role for NAD(P)H Dehydrogenase in Concentration of CO2 in the Bundle Sheath Cell of Zea mays.
    Peterson RB; Schultes NP; McHale NA; Zelitch I
    Plant Physiol; 2016 May; 171(1):125-38. PubMed ID: 27002061
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes.
    Cui K; Ma Q; Lu AY; Yang CS
    Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electron transport between plastoquinone and chlorophyll Ai in chloroplasts. II. Reaction kinetics and the function of plastocyanin in situ.
    Haehnel W
    Biochim Biophys Acta; 1977 Mar; 459(3):418-41. PubMed ID: 849434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.