BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9526773)

  • 1. Vacuum disc: frequency of high signal intensity on T2-weighted MR images.
    Schweitzer ME; el-Noueam KI
    Skeletal Radiol; 1998 Feb; 27(2):83-6. PubMed ID: 9526773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcification demonstrated as high signal intensity on T1-weighted MR images of the disks of the lumbar spine.
    Major NM; Helms CA; Genant HK
    Radiology; 1993 Nov; 189(2):494-6. PubMed ID: 8210379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of T1 and T2 weighted images of the lumbar spine.
    Moffit B; Reicher M; Lufkin R; Bentson J
    Comput Med Imaging Graph; 1988; 12(5):271-6. PubMed ID: 3179982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content.
    Malghem J; Lecouvet FE; François R; Vande Berg BC; Duprez T; Cosnard G; Maldague BE
    Skeletal Radiol; 2005 Feb; 34(2):80-6. PubMed ID: 15480646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging.
    Modic MT; Steinberg PM; Ross JS; Masaryk TJ; Carter JR
    Radiology; 1988 Jan; 166(1 Pt 1):193-9. PubMed ID: 3336678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interobserver reliability of detecting lumbar intervertebral disc high-intensity zone on magnetic resonance imaging and association of high-intensity zone with pain and anular disruption.
    Smith BM; Hurwitz EL; Solsberg D; Rubinstein D; Corenman DS; Dwyer AP; Kleiner J
    Spine (Phila Pa 1976); 1998 Oct; 23(19):2074-80. PubMed ID: 9794051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intravertebral vacuum cleft: changes in content after supine positioning.
    Malghem J; Maldague B; Labaisse MA; Dooms G; Duprez T; Devogelaer JP; Vande Berg B
    Radiology; 1993 May; 187(2):483-7. PubMed ID: 8475295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [MR imaging of degenerative lumbar disc disease emphasizing on signal intensity changes in vertebral body].
    Toyoda K; Ida M; Murakami Y; Harada J; Tada S
    Nihon Igaku Hoshasen Gakkai Zasshi; 1992 Dec; 52(12):1611-9. PubMed ID: 1488288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Magnetic resonance imaging of diseased cervical and lumbar intervertebral discs].
    Kadoya S; Nakamura T; Takarada A; Yamamoto I; Sato S
    Neurol Med Chir (Tokyo); 1989 Feb; 29(2):99-105. PubMed ID: 2475812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does the high-intensity zone (HIZ) of lumbar Intervertebral discs always represent an annular fissure?
    Shan Z; Chen H; Liu J; Ren H; Zhang X; Zhao F
    Eur Radiol; 2017 Mar; 27(3):1267-1276. PubMed ID: 27260341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance demonstration of hyperintense herniated discs and extruded disc fragments.
    Glickstein MF; Burke DL; Kressel HY
    Skeletal Radiol; 1989; 18(7):527-30. PubMed ID: 2588032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chemonucleolysis demonstrated by MR imaging.
    Masaryk TJ; Boumphrey F; Modic MT; Tamborrello C; Ross JS; Brown MD
    J Comput Assist Tomogr; 1986; 10(6):917-23. PubMed ID: 3782560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripheral focal low signal intensity areas in the degenerated annulus fibrosus on T2-weighted fast spin echo MR images: correlation with macroscopic and microscopic findings in elderly cadavers.
    Ahn JM; Muhle C; Kang HS; Haghighi P; Trudell D; Resnick D
    Skeletal Radiol; 1999 Apr; 28(4):209-14. PubMed ID: 10384991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertebral osteonecrosis: MR imaging findings and related changes on adjacent levels.
    Yu CW; Hsu CY; Shih TT; Chen BB; Fu CJ
    AJNR Am J Neuroradiol; 2007 Jan; 28(1):42-7. PubMed ID: 17213422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of disc vacuum contents during prolonged supine positioning: evaluation with MR image.
    Wang HJ; Chen BB; Yu CW; Hsu CY; Shih TT
    Spine (Phila Pa 1976); 2007 Nov; 32(23):2610-5. PubMed ID: 17978662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion-weighted magnetic resonance imaging of normal and degenerative lumbar intervertebral discs: a new method to potentially quantify the physiologic effect of physical therapy intervention.
    Beattie PF; Morgan PS; Peters D
    J Orthop Sports Phys Ther; 2008 Feb; 38(2):42-9. PubMed ID: 18560192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraspinal cyst communicating with the intervertebral disc in the lumbar spine: discal cyst.
    Chiba K; Toyama Y; Matsumoto M; Maruiwa H; Watanabe M; Nishizawa T
    Spine (Phila Pa 1976); 2001 Oct; 26(19):2112-8. PubMed ID: 11698889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance myelography evaluation of the lumbar spine end plates and intervertebral disks.
    Mollà E; Martí-Bonmatí L; Arana E; Martinez-Bisbal MC; Costa S
    Acta Radiol; 2005 Feb; 46(1):83-8. PubMed ID: 15841744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High intensity zone in lumbar spine and its correlation with disc degeneration.
    Jha SC; Takata Y; Abe M; Yamashita K; Tezuka F; Sakai T; Higashino K; Nagamachi A; Sairyo K
    J Med Invest; 2017; 64(1.2):39-42. PubMed ID: 28373626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marginal erosive discovertebral "Romanus" lesions in ankylosing spondylitis demonstrated by contrast enhanced Gd-DTPA magnetic resonance imaging.
    Jevtic V; Kos-Golja M; Rozman B; McCall I
    Skeletal Radiol; 2000 Jan; 29(1):27-33. PubMed ID: 10663586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.