BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9527791)

  • 1. Cellular accumulation, localization, and activity of a synthetic cyclopeptamine in fungi.
    Capobianco JO; Zakula D; Frost DJ; Goldman RC; Li L; Klein LL; Lartey PA
    Antimicrob Agents Chemother; 1998 Feb; 42(2):389-93. PubMed ID: 9527791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lipopeptide antimycotic, cilofungin modulates the incorporation of glucan-associated proteins into the cell wall of Candida albicans.
    Angiolella L; Simonetti N; Cassone A
    J Antimicrob Chemother; 1994 Jun; 33(6):1137-46. PubMed ID: 7928807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucan synthesis and its inhibition by cilofungin in susceptible and resistant strains of Candida albicans.
    Angiolella L; Bromuro C; Simonetti N; Cassone A
    J Med Vet Mycol; 1992; 30(5):369-76. PubMed ID: 1469538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of aculeacin A on reverting protoplasts of Candida albicans.
    Yamaguchi H; Hiratani T; Baba M; Osumi M
    Microbiol Immunol; 1987; 31(7):625-38. PubMed ID: 3325782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell wall composition and protoplast regeneration in Candida albicans.
    Elorza MV; Rico H; Gozalbo D; Sentandreu R
    Antonie Van Leeuwenhoek; 1983 Nov; 49(4-5):457-69. PubMed ID: 6360042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucan-associated protein modulations and ultrastructural changes of the cell wall in Candida albicans treated with micafungin, a water-soluble, lipopeptide antimycotic.
    Angiolella L; Maras B; Stringaro AR; Arancia G; Mondello F; Girolamo A; Palamara AT; Cassone A
    J Chemother; 2005 Aug; 17(4):409-16. PubMed ID: 16167521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The activity of cilofungin on the incorporation of glucan associated proteins into hyphal cells of Candida albicans.
    Angiolella L; Facchin M; Simonetti N; Cassone A
    J Chemother; 1995 Apr; 7(2):83-9. PubMed ID: 7666125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of a cell wall receptor in the mode of action of an anti-Candida toxin of Pichia anomala.
    Sawant AD; Ahearn DG
    Antimicrob Agents Chemother; 1990 Jul; 34(7):1331-5. PubMed ID: 2201251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for beta-1,6-glucan synthesis inhibition by caspofungin.
    Stevens DA; Ichinomiya M; Koshi Y; Horiuchi H
    Antimicrob Agents Chemother; 2006 Sep; 50(9):3160-1. PubMed ID: 16940118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a glucan-associated enolase as a main cell wall protein of Candida albicans and an indirect target of lipopeptide antimycotics.
    Angiolella L; Facchin M; Stringaro A; Maras B; Simonetti N; Cassone A
    J Infect Dis; 1996 Mar; 173(3):684-90. PubMed ID: 8627033
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Lee HS; Kim Y
    J Microbiol Biotechnol; 2017 Feb; 27(2):395-404. PubMed ID: 28100900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro antifungal activities and in vivo efficacies of 1,3-beta-D-glucan synthesis inhibitors L-671,329, L-646,991, tetrahydroechinocandin B, and L-687,781, a papulacandin.
    Bartizal K; Abruzzo G; Trainor C; Krupa D; Nollstadt K; Schmatz D; Schwartz R; Hammond M; Balkovec J; Vanmiddlesworth F
    Antimicrob Agents Chemother; 1992 Aug; 36(8):1648-57. PubMed ID: 1416847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of the incorporation of a 1,6-beta-glucan and an O-glycosylated protein epitope into the cell wall of Candida albicans.
    Sanjuán R; Zueco J; Pérez J; Peñarroja C; Sentandreu R
    Microbiology (Reading); 1996 Aug; 142 ( Pt 8)():2255-62. PubMed ID: 8760937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of beta-1,6-glucosylated cell wall proteins in yeast and hyphal forms of Candida albicans.
    Kapteyn JC; Montijn RC; Dijkgraaf GJ; Klis FM
    Eur J Cell Biol; 1994 Dec; 65(2):402-7. PubMed ID: 7536675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic and functional analyses unveil the response to hyphal wall stress in Candida albicans cells lacking β(1,3)-glucan remodeling.
    Degani G; Ragni E; Botias P; Ravasio D; Calderon J; Pianezzola E; Rodriguez-Peña JM; Vanoni MA; Arroyo J; Fonzi WA; Popolo L
    BMC Genomics; 2016 Jul; 17():482. PubMed ID: 27411447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linkages between macromolecules in Candida albicans cell wall.
    Elorza MV; Garcia de la Cruz F; San Juan R; Marcilla A; Rico H; Mormeneo S; Sentandreu R
    Arch Med Res; 1993; 24(3):305-10. PubMed ID: 8298282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans.
    Granger BL
    PLoS One; 2018; 13(1):e0191194. PubMed ID: 29329339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and preparation of cyclopeptamine antifungal agents.
    Klein LL; Li L
    Curr Pharm Des; 1999 Feb; 5(2):57-71. PubMed ID: 10066884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gradual solubilization of Candida cell wall beta-glucan by oxidative degradation in mice.
    Miura NN; Miura T; Ohno N; Adachi Y; Watanabe M; Tamura H; Tanaka S; Yadomae T
    FEMS Immunol Med Microbiol; 1998 Jun; 21(2):123-9. PubMed ID: 9685001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of sulfhydryl reactive reagents with components involved in (1,3)-beta-glucan synthesis from Candida albicans.
    Frost DJ; Brandt K; Kaufmann T; Goldman R
    Can J Microbiol; 1995 Aug; 41(8):692-8. PubMed ID: 7553452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.