These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 952837)
21. The phenotypic switch from chondrocytes to bone-forming cells involves asymmetric cell division and apoptosis. Roach HI; Erenpreisa J Connect Tissue Res; 1996; 35(1-4):85-91. PubMed ID: 9084646 [TBL] [Abstract][Full Text] [Related]
22. Interaction between cadmium and zinc, copper, or lead in relation to the collagen and mineral content of embryonic chick bone in tissue culture. Miyahara T; Oh-e Y; Takaine E; Kozuka H Toxicol Appl Pharmacol; 1983 Jan; 67(1):41-8. PubMed ID: 6845356 [No Abstract] [Full Text] [Related]
23. Cartilage resorption and endochondral bone formation during the development of long bones in chick embryos. Roach HI; Shearer JR Bone Miner; 1989 Jul; 6(3):289-309. PubMed ID: 2758158 [TBL] [Abstract][Full Text] [Related]
24. Dietary cellulose, zinc and copper: effects on tissue levels of trace minerals in the rat. Tsai RC; Lei KY J Nutr; 1979 Jun; 109(6):1117-22. PubMed ID: 448451 [TBL] [Abstract][Full Text] [Related]
25. Ovotransferrin and ovotransferrin receptor expression during chondrogenesis and endochondral bone formation in developing chick embryo. Gentili C; Doliana R; Bet P; Campanile G; Colombatti A; Cancedda FD; Cancedda R J Cell Biol; 1994 Feb; 124(4):579-88. PubMed ID: 8106555 [TBL] [Abstract][Full Text] [Related]
26. Autometallographical localisation of Cu and Zn within target cell compartments of winkles following exposure to Cu&Zn mixtures. Soto M; Lekube X; Marigómez I Eur J Histochem; 1999; 43(4):323-34. PubMed ID: 10682271 [TBL] [Abstract][Full Text] [Related]
27. Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection. Ciaffaglione V; Rizzarelli E Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003398 [TBL] [Abstract][Full Text] [Related]
28. Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage. Miao D; Scutt A J Histochem Cytochem; 2002 Mar; 50(3):333-40. PubMed ID: 11850436 [TBL] [Abstract][Full Text] [Related]
29. The 25-kilodalton insulin-like growth factor (IGF)-binding protein inhibits both basal and IGF-I-mediated growth of chick embryo pelvic cartilage in vitro. Burch WM; Correa J; Shively JE; Powell DR J Clin Endocrinol Metab; 1990 Jan; 70(1):173-80. PubMed ID: 1688439 [TBL] [Abstract][Full Text] [Related]
30. Adenosine 3',5'-monophosphate: a modulator of embryonic chick cartilage growth. Burch WM; Lebovitz HE J Clin Invest; 1981 Dec; 68(6):1496-502. PubMed ID: 6172446 [TBL] [Abstract][Full Text] [Related]
31. Embryonic chick cartilage produces its own somatomedin-like peptide to stimulate cartilage growth in vitro. Burch WM; Weir S; Van Wyk JJ Endocrinology; 1986 Sep; 119(3):1370-6. PubMed ID: 3732171 [TBL] [Abstract][Full Text] [Related]
32. Effects of iron, copper, zinc, calcium, and magnesium on human lymphocytes in culture. Carpentieri U; Myers J; Daeschner CW; Haggard ME Biol Trace Elem Res; 1988 Jul; 16(2):165-76. PubMed ID: 2484545 [TBL] [Abstract][Full Text] [Related]
33. Cadmium turnover and changes of zinc and copper body status of rats continuously exposed to cadmium and ethanol. Brzóska MM; Moniuszko-Jakoniuk J; Jurczuk M; Gałazyn-Sidorczuk M Alcohol Alcohol; 2002; 37(3):213-21. PubMed ID: 12003907 [TBL] [Abstract][Full Text] [Related]
34. Interactions between Zn and Cu in LEC rats, an animal model of Wilson's disease. Santon A; Giannetto S; Sturniolo GC; Medici V; D'Incà R; Irato P; Albergoni V Histochem Cell Biol; 2002 Mar; 117(3):275-81. PubMed ID: 11914925 [TBL] [Abstract][Full Text] [Related]
35. Zinc inhibits the nuclear translocation of the tumor suppressor protein p53 and protects cultured human neurons from copper-induced neurotoxicity. VanLandingham JW; Fitch CA; Levenson CW Neuromolecular Med; 2002; 1(3):171-82. PubMed ID: 12095159 [TBL] [Abstract][Full Text] [Related]
36. After the Aznalcóllar mine spill: arsenic, zinc, selenium, lead and copper levels in the livers and bones of five waterfowl species. Taggart MA; Figuerola J; Green AJ; Mateo R; Deacon C; Osborn D; Meharg AA Environ Res; 2006 Mar; 100(3):349-61. PubMed ID: 16165123 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of dog bones in the indirect assessment of environmental contamination with trace elements. Lanocha N; Kalisinska E; Kosik-Bogacka DI; Budis H Biol Trace Elem Res; 2012 Jun; 147(1-3):103-12. PubMed ID: 22234824 [TBL] [Abstract][Full Text] [Related]
38. Interaction between cadmium and copper in relation to the collagen metabolism of embryonic chick bone in tissue culture. Miyahara T; Sugiyama S; Kaji T; Yamashita R; Oh-e Y; Kurano T; Kozuka H Toxicol Appl Pharmacol; 1984 Sep; 75(3):479-84. PubMed ID: 6474475 [TBL] [Abstract][Full Text] [Related]
39. Effect of fulvic and humic acids on copper and zinc homeostasis in rats. Hullár I; Vucskits AV; Berta E; Andrásofszky E; Bersényi A; Szabó J Acta Vet Hung; 2018 Mar; 66(1):40-51. PubMed ID: 29580088 [TBL] [Abstract][Full Text] [Related]
40. Effects of Copper and Zinc Supplementation on Weight Gain and Hematological Parameters in Pre-weaning Calves. Mattioli GA; Rosa DE; Turic E; Relling AE; Galarza E; Fazzio LE Biol Trace Elem Res; 2018 Oct; 185(2):327-331. PubMed ID: 29404982 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]