BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9528686)

  • 1. Reactions of halogen-substituted aziridinylbenzoquinones with glutathione. Formation of diglutathionyl conjugates and semiquinones.
    Giulivi C; Forlin A; Bellin S; Cadenas E
    Chem Biol Interact; 1998 Jan; 108(3):137-54. PubMed ID: 9528686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol oxidation coupled to DT-diaphorase-catalysed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase.
    Ordoñez ID; Cadenas E
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):481-90. PubMed ID: 1530580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diaziquone-glutathione conjugates: characterization and mechanisms of formation.
    Gutierrez PL; Siva S
    Chem Res Toxicol; 1995; 8(3):455-64. PubMed ID: 7578933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymic- and thiol-mediated activation of halogen-substituted diaziridinylbenzoquinones: redox transitions of the semiquinone and semiquinone-thioether species.
    Goin J; Giulivi C; Butler J; Cadenas E
    Free Radic Biol Med; 1995 Mar; 18(3):525-36. PubMed ID: 9101243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular activation of fluorinated aziridinylbenzoquinone in HT29 cells EPR studies.
    Giulivi C; Cadenas E
    Chem Biol Interact; 1998 Jun; 113(3):191-204. PubMed ID: 9717518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathionyl- and hydroxyl radical formation coupled to the redox transitions of 1,4-naphthoquinone bioreductive alkylating agents during glutathione two-electron reductive addition.
    Goin J; Gibson DD; McCay PB; Cadenas E
    Arch Biochem Biophys; 1991 Aug; 288(2):386-96. PubMed ID: 1654832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytotoxicity of RH1 and related aziridinylbenzoquinones: involvement of activation by NAD(P)H:quinone oxidoreductase (NQO1) and oxidative stress.
    Nemeikaite-Ceniene A; Sarlauskas J; Anusevicius Z; Nivinskas H; Cenas N
    Arch Biochem Biophys; 2003 Aug; 416(1):110-8. PubMed ID: 12859987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sigmatropic reactions of the aziridinyl semiquinone species. Why aziridinyl benzoquinones are metabolically more stable than aziridinyl indoloquinones.
    Xing C; Skibo EB
    Biochemistry; 2000 Sep; 39(35):10770-80. PubMed ID: 10978162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of p21 mediated by reactive oxygen species formed during the metabolism of aziridinylbenzoquinones by HCT116 cells.
    Qiu X; Forman HJ; Schönthal AH; Cadenas E
    J Biol Chem; 1996 Dec; 271(50):31915-21. PubMed ID: 8943236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of DOPAC by nitric oxide: effect of superoxide dismutase.
    Laranjinha J; Cadenas E
    J Neurochem; 2002 May; 81(4):892-900. PubMed ID: 12065648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions of glutathione and glutathione radicals with benzoquinones.
    Butler J; Hoey BM
    Free Radic Biol Med; 1992; 12(5):337-45. PubMed ID: 1592273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiols oxidation and covalent binding of BSA by cyclolignanic quinones are enhanced by the magnesium cation.
    Alegria AE; Sanchez-Cruz P; Kumar A; Garcia C; Gonzalez FA; Orellano A; Zayas B; Gordaliza M
    Free Radic Res; 2008 Jan; 42(1):70-81. PubMed ID: 18324525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-activity study on the quinone/quinone methide chemistry of flavonoids.
    Awad HM; Boersma MG; Boeren S; van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2001 Apr; 14(4):398-408. PubMed ID: 11304128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of NAD(P)H:quinone oxidoreductase in quinone-mediated p21 induction in human colon carcinoma cells.
    Qiu XB; Cadenas E
    Arch Biochem Biophys; 1997 Oct; 346(2):241-51. PubMed ID: 9343371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation.
    Giulivi C; Cadenas E
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of glutathione on the redox transitions of naphthohydroquinone derivatives formed during DT-diaphorase catalysis.
    Llopis J; Ernster L; Cadenas E
    Free Radic Res Commun; 1990; 8(4-6):271-85. PubMed ID: 2113028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of superoxide dismutase on the autoxidation of substituted hydro- and semi-naphthoquinones.
    Ollinger K; Buffinton GD; Ernster L; Cadenas E
    Chem Biol Interact; 1990; 73(1):53-76. PubMed ID: 2105855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reductive activation of the antitumor drug RH1 to its semiquinone free radical by NADPH cytochrome P450 reductase and by HCT116 human colon cancer cells.
    Hasinoff BB; Begleiter A
    Free Radic Res; 2006 Sep; 40(9):974-8. PubMed ID: 17015278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation.
    Awad HM; Boersma MG; Boeren S; Van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2003 Jul; 16(7):822-31. PubMed ID: 12870884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breaking the dogma: PCB-derived semiquinone free radicals do not form covalent adducts with DNA, GSH, and amino acids.
    Wangpradit O; Rahaman A; Mariappan SV; Buettner GR; Robertson LW; Luthe G
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2138-47. PubMed ID: 26396011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.