BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 9528927)

  • 1. Phosphate transport in pig proximal small intestines during postnatal development: lack of modulation by calcitriol.
    Schröder B; Hattenhauer O; Breves G
    Endocrinology; 1998 Apr; 139(4):1500-7. PubMed ID: 9528927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Duodenal Ca2+ absorption is not stimulated by calcitriol during early postnatal development of pigs.
    Schroeder B; Dahl MR; Breves G
    Am J Physiol; 1998 Aug; 275(2):G305-13. PubMed ID: 9688658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of calbindin-D9k in buffering cytosolic free Ca2+ ions in pig duodenal enterocytes.
    Schröder B; Schlumbohm C; Kaune R; Breves G
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):715-22. PubMed ID: 8734984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for vitamin D-independent active calcium absorption in newborn piglets.
    Schröder B; Kaune R; Schlumbohm C; Breves G; Harmeyer J
    Calcif Tissue Int; 1993 Apr; 52(4):305-9. PubMed ID: 8385545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium transport by plasma membranes of enterocytes during development: role of 1,25-(OH)2 vitamin D3.
    Ghishan FK; Leonard D; Pietsch J
    Pediatr Res; 1988 Sep; 24(3):338-41. PubMed ID: 3211619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholecalciferol modulates plasma phosphate but not plasma vitamin D levels and intestinal phosphate absorption in rainbow trout (Oncorhynchus mykiss).
    Avila EM; Basantes SP; Ferraris RP
    Gen Comp Endocrinol; 1999 Jun; 114(3):460-9. PubMed ID: 10336834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary inulin alters the intestinal absorptive and barrier function of piglet intestine after weaning.
    Awad WA; Ghareeb K; Paßlack N; Zentek J
    Res Vet Sci; 2013 Aug; 95(1):249-54. PubMed ID: 23523472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of 1,25-dihydroxyvitamin D3 on phosphate homeostasis in the X-linked hypophosphatemic (Hyp) mouse.
    Tenenhouse HS; Scriver CR
    Endocrinology; 1981 Aug; 109(2):658-60. PubMed ID: 6894727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1alpha(OH)D3 One-alpha-hydroxy-cholecalciferol--an active vitamin D analog. Clinical studies on prophylaxis and treatment of secondary hyperparathyroidism in uremic patients on chronic dialysis.
    Brandi L
    Dan Med Bull; 2008 Nov; 55(4):186-210. PubMed ID: 19232159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of intestinal calcium and phosphate transport in young goats fed a nitrogen- and/or calcium-reduced diet.
    Elfers K; Wilkens MR; Breves G; Muscher-Banse AS
    Br J Nutr; 2015 Dec; 114(12):1949-64. PubMed ID: 26443238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate transport in brush-border membranes from control and rachitic pig kidney and small intestine.
    Brandis M; Harmeyer J; Kaune R; Mohrmann M; Murer H; Zimolo Z
    J Physiol; 1987 Mar; 384():479-90. PubMed ID: 2821238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal transport of calcium in rat biliary cirrhosis.
    Buts JP; De Keyser N; Collette E; Bonsignore M; Lambotte L; Desjeux JF; Sokal EM
    Pediatr Res; 1996 Oct; 40(4):533-41. PubMed ID: 8888279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate transport by plasma membranes of enterocytes during development: role of 1,25-dihydroxycholecalciferol.
    Ghishan FK
    Am J Clin Nutr; 1992 Apr; 55(4):873-7. PubMed ID: 1312766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3.
    Katai K; Miyamoto K; Kishida S; Segawa H; Nii T; Tanaka H; Tani Y; Arai H; Tatsumi S; Morita K; Taketani Y; Takeda E
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):705-12. PubMed ID: 10527952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate transport across rat jejunum: influence of sodium, pH, and 1,25-dihydroxyvitamin D3.
    Lee DB; Walling MW; Corry DB
    Am J Physiol; 1986 Jul; 251(1 Pt 1):G90-5. PubMed ID: 2425640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship of membrane fluidity to calcium flux in chick intestinal brush border membranes.
    Bikle DD; Whitney J; Munson S
    Endocrinology; 1984 Jan; 114(1):260-7. PubMed ID: 6546306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of 1,25-dihydroxyvitamin D-3 deficiency on Ca(2+)-transport and Ca(2+)-uptake into brush-border membrane vesicles from pig small intestine.
    Kaune R; Kassianoff I; Schröder B; Harmeyer J
    Biochim Biophys Acta; 1992 Aug; 1109(2):187-94. PubMed ID: 1520695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of maternal over- and undernutrition on intestinal morphology, enzyme activity, and gene expression of nutrient transporters in newborn and weaned pigs.
    Cao M; Che L; Wang J; Yang M; Su G; Fang Z; Lin Y; Xu S; Wu D
    Nutrition; 2014; 30(11-12):1442-7. PubMed ID: 25280425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No effect of vitamin D3 treatment on active calcium absorption across ruminal epithelium of sheep.
    Schröder B; Goebel W; Huber K; Breves G
    J Vet Med A Physiol Pathol Clin Med; 2001 Aug; 48(6):353-63. PubMed ID: 11554493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism and regulation of intestinal phosphate absorption.
    Cross HS; Debiec H; Peterlik M
    Miner Electrolyte Metab; 1990; 16(2-3):115-24. PubMed ID: 2250617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.