BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 9529043)

  • 1. Chlamydial infection in inducible nitric oxide synthase knockout mice.
    Igietseme JU; Perry LL; Ananaba GA; Uriri IM; Ojior OO; Kumar SN; Caldwell HD
    Infect Immun; 1998 Apr; 66(4):1282-6. PubMed ID: 9529043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducible nitric oxide synthase does not affect resolution of murine chlamydial genital tract infections or eradication of chlamydiae in primary murine cell culture.
    Ramsey KH; Miranpuri GS; Poulsen CE; Marthakis NB; Braune LM; Byrne GI
    Infect Immun; 1998 Feb; 66(2):835-8. PubMed ID: 9453651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia trachomatis persistence in the female mouse genital tract: inducible nitric oxide synthase and infection outcome.
    Ramsey KH; Miranpuri GS; Sigar IM; Ouellette S; Byrne GI
    Infect Immun; 2001 Aug; 69(8):5131-7. PubMed ID: 11447195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genital tract infection with Chlamydia trachomatis fails to induce protective immunity in gamma interferon receptor-deficient mice despite a strong local immunoglobulin A response.
    Johansson M; Schön K; Ward M; Lycke N
    Infect Immun; 1997 Mar; 65(3):1032-44. PubMed ID: 9038313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism of T-cell control of Chlamydia in mice: role of nitric oxide in vivo.
    Igietseme JU
    Immunology; 1996 May; 88(1):1-5. PubMed ID: 8707333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neither interleukin-6 nor inducible nitric oxide synthase is required for clearance of Chlamydia trachomatis from the murine genital tract epithelium.
    Perry LL; Feilzer K; Caldwell HD
    Infect Immun; 1998 Mar; 66(3):1265-9. PubMed ID: 9488425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of intracellular multiplication of human strains of Chlamydia trachomatis by nitric oxide.
    Igietseme JU; Uriri IM; Chow M; Abe E; Rank RG
    Biochem Biophys Res Commun; 1997 Mar; 232(3):595-601. PubMed ID: 9126319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular mechanism of T-cell control of Chlamydia in mice: role of nitric oxide.
    Igietseme JU
    Immunology; 1996 Jan; 87(1):1-8. PubMed ID: 8666420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TNF-alpha controls intracellular mycobacterial growth by both inducible nitric oxide synthase-dependent and inducible nitric oxide synthase-independent pathways.
    Bekker LG; Freeman S; Murray PJ; Ryffel B; Kaplan G
    J Immunol; 2001 Jun; 166(11):6728-34. PubMed ID: 11359829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent and -independent pathways.
    Perry LL; Feilzer K; Caldwell HD
    J Immunol; 1997 Apr; 158(7):3344-52. PubMed ID: 9120292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Route of infection that induces a high intensity of gamma interferon-secreting T cells in the genital tract produces optimal protection against Chlamydia trachomatis infection in mice.
    Igietseme JU; Uriri IM; Kumar SN; Ananaba GA; Ojior OO; Momodu IA; Candal DH; Black CM
    Infect Immun; 1998 Sep; 66(9):4030-5. PubMed ID: 9712743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of gamma interferon in controlling murine chlamydial genital tract infection.
    Ito JI; Lyons JM
    Infect Immun; 1999 Oct; 67(10):5518-21. PubMed ID: 10496942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plac8-dependent and inducible NO synthase-dependent mechanisms clear Chlamydia muridarum infections from the genital tract.
    Johnson RM; Kerr MS; Slaven JE
    J Immunol; 2012 Feb; 188(4):1896-904. PubMed ID: 22238459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fc receptor regulation of protective immunity against Chlamydia trachomatis.
    Moore T; Ananaba GA; Bolier J; Bowers S; Belay T; Eko FO; Igietseme JU
    Immunology; 2002 Feb; 105(2):213-21. PubMed ID: 11872097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role for inducible nitric oxide synthase in protection from chronic Chlamydia trachomatis urogenital disease in mice and its regulation by oxygen free radicals.
    Ramsey KH; Sigar IM; Rana SV; Gupta J; Holland SM; Byrne GI
    Infect Immun; 2001 Dec; 69(12):7374-9. PubMed ID: 11705910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IL-17A synergizes with IFN-γ to upregulate iNOS and NO production and inhibit chlamydial growth.
    Zhang Y; Wang H; Ren J; Tang X; Jing Y; Xing D; Zhao G; Yao Z; Yang X; Bai H
    PLoS One; 2012; 7(6):e39214. PubMed ID: 22745717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subclinical chlamydial infection of the female mouse genital tract generates a potent protective immune response: implications for development of live attenuated chlamydial vaccine strains.
    Su H; Messer R; Whitmire W; Hughes S; Caldwell HD
    Infect Immun; 2000 Jan; 68(1):192-6. PubMed ID: 10603387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice.
    Cotter TW; Ramsey KH; Miranpuri GS; Poulsen CE; Byrne GI
    Infect Immun; 1997 Jun; 65(6):2145-52. PubMed ID: 9169744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of TLR 2, TLR 4 and iNOS in cervical monocytes of Chlamydia trachomatis-infected women and their role in host immune response.
    Agrawal T; Bhengraj AR; Vats V; Salhan S; Mittal A
    Am J Reprod Immunol; 2011 Dec; 66(6):534-43. PubMed ID: 21883620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antigen-Specific CD4
    Lin H; He C; Koprivsek JJ; Chen J; Zhou Z; Arulanandam B; Xu Z; Tang L; Zhong G
    Infect Immun; 2019 Jun; 87(6):. PubMed ID: 30962403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.