BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 9529253)

  • 1. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity.
    Alvarez ME; Pennell RI; Meijer PJ; Ishikawa A; Dixon RA; Lamb C
    Cell; 1998 Mar; 92(6):773-84. PubMed ID: 9529253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity.
    Grant JJ; Yun BW; Loake GJ
    Plant J; 2000 Dec; 24(5):569-82. PubMed ID: 11123796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide functions as a signal in plant disease resistance.
    Delledonne M; Xia Y; Dixon RA; Lamb C
    Nature; 1998 Aug; 394(6693):585-8. PubMed ID: 9707120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Elicitor Protein AsES Induces a Systemic Acquired Resistance Response Accompanied by Systemic Microbursts and Micro-Hypersensitive Responses in Fragaria ananassa.
    Hael-Conrad V; Perato SM; Arias ME; Martínez-Zamora MG; Di Peto PLÁ; Martos GG; Castagnaro AP; Díaz-Ricci JC; Chalfoun NR
    Mol Plant Microbe Interact; 2018 Jan; 31(1):46-60. PubMed ID: 28635519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response.
    Levine A; Tenhaken R; Dixon R; Lamb C
    Cell; 1994 Nov; 79(4):583-93. PubMed ID: 7954825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to Pseudomonas syringae pv. tomato.
    Simon C; Langlois-Meurinne M; Didierlaurent L; Chaouch S; Bellvert F; Massoud K; Garmier M; Thareau V; Comte G; Noctor G; Saindrenan P
    Plant Cell Environ; 2014 May; 37(5):1114-29. PubMed ID: 24131360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response.
    Levine A; Pennell RI; Alvarez ME; Palmer R; Lamb C
    Curr Biol; 1996 Apr; 6(4):427-37. PubMed ID: 8723347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum.
    Lee SC; Hwang BK
    Planta; 2005 Aug; 221(6):790-800. PubMed ID: 15729568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response.
    Choi HW; Lee DH; Hwang BK
    Mol Plant Microbe Interact; 2009 Nov; 22(11):1389-400. PubMed ID: 19810808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways.
    Tian S; Wang X; Li P; Wang H; Ji H; Xie J; Qiu Q; Shen D; Dong H
    Plant Physiol; 2016 Jul; 171(3):1635-50. PubMed ID: 26945050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock.
    Korneli C; Danisman S; Staiger D
    Plant Cell Physiol; 2014 Sep; 55(9):1613-22. PubMed ID: 24974385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pepper RNA-binding protein CaRBP1 functions in hypersensitive cell death and defense signaling in the cytoplasm.
    Lee DH; Kim DS; Hwang BK
    Plant J; 2012 Oct; 72(2):235-48. PubMed ID: 22640562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis.
    Mishina TE; Zeier J
    Plant J; 2007 May; 50(3):500-13. PubMed ID: 17419843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens.
    Hwang IS; An SH; Hwang BK
    Plant J; 2011 Sep; 67(5):749-62. PubMed ID: 21535260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana.
    Deng XG; Zhu T; Zou LJ; Han XY; Zhou X; Xi DH; Zhang DW; Lin HH
    Plant J; 2016 Feb; 85(4):478-93. PubMed ID: 26749255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AtRbohF is a crucial modulator of defence-associated metabolism and a key actor in the interplay between intracellular oxidative stress and pathogenesis responses in Arabidopsis.
    Chaouch S; Queval G; Noctor G
    Plant J; 2012 Feb; 69(4):613-27. PubMed ID: 21985584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Priming in systemic plant immunity.
    Jung HW; Tschaplinski TJ; Wang L; Glazebrook J; Greenberg JT
    Science; 2009 Apr; 324(5923):89-91. PubMed ID: 19342588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation.
    Zeier J; Pink B; Mueller MJ; Berger S
    Planta; 2004 Aug; 219(4):673-83. PubMed ID: 15098125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signals involved in Arabidopsis resistance to Trichoplusia ni caterpillars induced by virulent and avirulent strains of the phytopathogen Pseudomonas syringae.
    Cui J; Jander G; Racki LR; Kim PD; Pierce NE; Ausubel FM
    Plant Physiol; 2002 Jun; 129(2):551-64. PubMed ID: 12068100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide.
    Jabs T; Dietrich RA; Dangl JL
    Science; 1996 Sep; 273(5283):1853-6. PubMed ID: 8791589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.