These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 9529383)

  • 1. Dissection of de novo membrane insertion activities of internal transmembrane segments of ATP-binding-cassette transporters: toward understanding topological rules for membrane assembly of polytopic membrane proteins.
    Zhang JT; Chen M; Han E; Wang C
    Mol Biol Cell; 1998 Apr; 9(4):853-63. PubMed ID: 9529383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence requirements for membrane assembly of polytopic membrane proteins: molecular dissection of the membrane insertion process and topogenesis of the human MDR3 P-glycoprotein.
    Zhang JT
    Mol Biol Cell; 1996 Nov; 7(11):1709-21. PubMed ID: 8930894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences.
    Chen M; Zhang JT
    Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane insertion, processing, and topology of cystic fibrosis transmembrane conductance regulator (CFTR) in microsomal membranes.
    Chen M; Zhang JT
    Mol Membr Biol; 1996; 13(1):33-40. PubMed ID: 9147660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological determinants of internal transmembrane segments in P-glycoprotein sequences.
    Zhang JT; Lee CH; Duthie M; Ling V
    J Biol Chem; 1995 Jan; 270(4):1742-6. PubMed ID: 7829509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction of the most common cystic fibrosis mutation (Delta F508) into human P-glycoprotein disrupts packing of the transmembrane segments.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2002 Aug; 277(31):27585-8. PubMed ID: 12070134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane topology of P-glycoprotein as determined by epitope insertion: transmembrane organization of the N-terminal domain of mdr3.
    Kast C; Canfield V; Levenson R; Gros P
    Biochemistry; 1995 Apr; 34(13):4402-11. PubMed ID: 7535563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-integration characteristics of two ABC transporters, CFTR and P-glycoprotein.
    Enquist K; Fransson M; Boekel C; Bengtsson I; Geiger K; Lang L; Pettersson A; Johansson S; von Heijne G; Nilsson I
    J Mol Biol; 2009 Apr; 387(5):1153-64. PubMed ID: 19236881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positional dependence of non-native polar mutations on folding of CFTR helical hairpins.
    Wehbi H; Gasmi-Seabrook G; Choi MY; Deber CM
    Biochim Biophys Acta; 2008 Jan; 1778(1):79-87. PubMed ID: 17949679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane orientation and topogenesis of the third and fourth membrane-spanning regions of human P-glycoprotein (MDR1).
    Skach WR; Lingappa VR
    Cancer Res; 1994 Jun; 54(12):3202-9. PubMed ID: 7911395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-translational effects of temperature on membrane insertion and orientation of P-glycoprotein sequences.
    Zhang JT; Chong CH
    Mol Cell Biochem; 1996 Jun; 159(1):25-31. PubMed ID: 8813706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the ribosome in sequence-specific regulation of membrane targeting and translocation of P-glycoprotein signal-anchor transmembrane segments.
    Zhang JT; Han E; Liu Y
    J Cell Sci; 2000 Jul; 113 ( Pt 14)():2545-55. PubMed ID: 10862712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane topology of the N-terminal half of the hamster P-glycoprotein molecule.
    Zhang JT; Duthie M; Ling V
    J Biol Chem; 1993 Jul; 268(20):15101-10. PubMed ID: 8100818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane organization of mouse P-glycoprotein determined by epitope insertion and immunofluorescence.
    Kast C; Canfield V; Levenson R; Gros P
    J Biol Chem; 1996 Apr; 271(16):9240-8. PubMed ID: 8621583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly.
    Lu Y; Xiong X; Helm A; Kimani K; Bragin A; Skach WR
    J Biol Chem; 1998 Jan; 273(1):568-76. PubMed ID: 9417117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.
    Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL
    J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of cytoplasmic factors regulating the membrane orientation of P-glycoprotein sequences.
    Zhang JT; Ling V
    Biochemistry; 1995 Jul; 34(28):9159-65. PubMed ID: 7619815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters.
    Jordan IK; Kota KC; Cui G; Thompson CH; McCarty NA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18865-70. PubMed ID: 19020075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for misfolding at a disease phenotypic position in CFTR: comparison of TM3/4 helix-loop-helix constructs with TM4 peptides.
    Mulvihill CM; Deber CM
    Biochim Biophys Acta; 2012 Jan; 1818(1):49-54. PubMed ID: 21996038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of ribosomes in reinitiation of membrane insertion of internal transmembrane segments in a polytopic membrane protein.
    Wang C; Chen M; Han E; Zhang JT
    Biochemistry; 1997 Sep; 36(38):11437-43. PubMed ID: 9298963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.