These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 9529383)
21. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations. Choi MY; Cardarelli L; Therien AG; Deber CM Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503 [TBL] [Abstract][Full Text] [Related]
22. Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). Rosenberg MF; Kamis AB; Aleksandrov LA; Ford RC; Riordan JR J Biol Chem; 2004 Sep; 279(37):39051-7. PubMed ID: 15247233 [TBL] [Abstract][Full Text] [Related]
23. Cystic fibrosis transmembrane conductance regulator and adenosine triphosphate. Abraham EH; Okunieff P; Scala S; Vos P; Oosterveld MJ; Chen AY; Shrivastav B Science; 1997 Feb; 275(5304):1324-6. PubMed ID: 9064787 [No Abstract] [Full Text] [Related]
24. Detergent-free purification of ABC (ATP-binding-cassette) transporters. Gulati S; Jamshad M; Knowles TJ; Morrison KA; Downing R; Cant N; Collins R; Koenderink JB; Ford RC; Overduin M; Kerr ID; Dafforn TR; Rothnie AJ Biochem J; 2014 Jul; 461(2):269-78. PubMed ID: 24758594 [TBL] [Abstract][Full Text] [Related]
25. The Folding Pathway of ABC Transporter CFTR: Effective and Robust. van der Sluijs P; Hoelen H; Schmidt A; Braakman I J Mol Biol; 2024 Jul; 436(14):168591. PubMed ID: 38677493 [TBL] [Abstract][Full Text] [Related]
26. The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3. He L; Skirkanich J; Moronetti L; Lewis R; Lamitina T Dis Model Mech; 2012 Nov; 5(6):930-9. PubMed ID: 22569626 [TBL] [Abstract][Full Text] [Related]
27. Membrane topology of a cysteine-less mutant of human P-glycoprotein. Loo TW; Clarke DM J Biol Chem; 1995 Jan; 270(2):843-8. PubMed ID: 7822320 [TBL] [Abstract][Full Text] [Related]
28. Penetration of three transmembrane segments of Slc11a1 in lipid bilayers. Qi H; Wang Y; Chu H; Wang W; Mao Q Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():82-92. PubMed ID: 24299979 [TBL] [Abstract][Full Text] [Related]
29. Membrane orientation of transmembrane segments 11 and 12 of MDR- and non-MDR-associated P-glycoproteins. Zhang JT; Ling V Biochim Biophys Acta; 1993 Dec; 1153(2):191-202. PubMed ID: 7903865 [TBL] [Abstract][Full Text] [Related]
31. Cystic fibrosis transmembrane conductance regulator: the first nucleotide binding fold targets the membrane with retention of its ATP binding function. Ko YH; Delannoy M; Pedersen PL Biochemistry; 1997 Apr; 36(16):5053-64. PubMed ID: 9125527 [TBL] [Abstract][Full Text] [Related]
32. Evolution of the ATP-binding-cassette transmembrane transporters of vertebrates. Hughes AL Mol Biol Evol; 1994 Nov; 11(6):899-910. PubMed ID: 7529351 [TBL] [Abstract][Full Text] [Related]
33. A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function. Pasyk EA; Morin XK; Zeman P; Garami E; Galley K; Huan LJ; Wang Y; Bear CE J Biol Chem; 1998 Nov; 273(48):31759-64. PubMed ID: 9822639 [TBL] [Abstract][Full Text] [Related]
34. Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein. Wang Y; Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2007 Nov; 282(46):33247-33251. PubMed ID: 17911111 [TBL] [Abstract][Full Text] [Related]
35. Cooperativity and flexibility of cystic fibrosis transmembrane conductance regulator transmembrane segments participate in membrane localization of a charged residue. Carveth K; Buck T; Anthony V; Skach WR J Biol Chem; 2002 Oct; 277(42):39507-14. PubMed ID: 12186867 [TBL] [Abstract][Full Text] [Related]
36. Structural and functional aspects of P-glycoproteins and related transport proteins. Lepage P; Gros P Curr Opin Nephrol Hypertens; 1993 Sep; 2(5):735-43. PubMed ID: 7522912 [TBL] [Abstract][Full Text] [Related]
37. The glycine residues G551 and G1349 within the ATP-binding cassette signature motifs play critical roles in the activation and inhibition of cystic fibrosis transmembrane conductance regulator channels by phloxine B. Melin P; Norez C; Callebaut I; Becq F J Membr Biol; 2005 Dec; 208(3):203-12. PubMed ID: 16604470 [TBL] [Abstract][Full Text] [Related]
38. Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). Bianchet MA; Ko YH; Amzel LM; Pedersen PL J Bioenerg Biomembr; 1997 Oct; 29(5):503-24. PubMed ID: 9511935 [TBL] [Abstract][Full Text] [Related]
39. Arsenite regulates Cystic Fibrosis Transmembrane Conductance Regulator and P-glycoprotein: evidence of pathway independence. Maitra R; Hamilton JW Cell Physiol Biochem; 2005; 16(1-3):109-18. PubMed ID: 16121039 [TBL] [Abstract][Full Text] [Related]
40. Membrane topology distinguishes a subfamily of the ATP-binding cassette (ABC) transporters. Tusnády GE; Bakos E; Váradi A; Sarkadi B FEBS Lett; 1997 Jan; 402(1):1-3. PubMed ID: 9013845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]