These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9530141)

  • 1. Effect of prior eccentric contractions on lactate/H+ transport in rat skeletal muscle.
    Pilegaard H; Asp S
    Am J Physiol; 1998 Mar; 274(3):E554-9. PubMed ID: 9530141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased insulin action on muscle glucose transport after eccentric contractions in rats.
    Asp S; Richter EA
    J Appl Physiol (1985); 1996 Nov; 81(5):1924-8. PubMed ID: 8941511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactate transport studied in sarcolemmal giant vesicles from rat skeletal muscles: effect of denervation.
    Pilegaard H; Juel C
    Am J Physiol; 1995 Oct; 269(4 Pt 1):E679-82. PubMed ID: 7485481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased muscle GLUT-4 and contraction-induced glucose transport after eccentric contractions.
    Kristiansen S; Asp S; Richter EA
    Am J Physiol; 1996 Aug; 271(2 Pt 2):R477-82. PubMed ID: 8770151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced lactate transport in denervated rat skeletal muscle.
    McCullagh KJ; Bonen A
    Am J Physiol; 1995 Apr; 268(4 Pt 2):R884-8. PubMed ID: 7733397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres.
    Wetzel P; Hasse A; Papadopoulos S; Voipio J; Kaila K; Gros G
    J Physiol; 2001 Mar; 531(Pt 3):743-56. PubMed ID: 11251055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle.
    Pilegaard H; Domino K; Noland T; Juel C; Hellsten Y; Halestrap AP; Bangsbo J
    Am J Physiol; 1999 Feb; 276(2):E255-61. PubMed ID: 9950784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of lipid infusion on metabolism and force of rat skeletal muscles during intense contractions.
    Silveira L; Hirabara SM; Alberici LC; Lambertucci RH; Peres CM; Takahashi HK; Pettri A; Alba-Loureiro T; Luchessi AD; Cury-Boaventura MF; Vercesi AE; Curi R
    Cell Physiol Biochem; 2007; 20(1-4):213-26. PubMed ID: 17595530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic muscle stimulation increases lactate transport in rat skeletal muscle.
    McCullagh KJ; Juel C; O'Brien M; Bonen A
    Mol Cell Biochem; 1996 Mar; 156(1):51-7. PubMed ID: 8709976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle contraction increases lactate transport while reducing sarcolemmal MCT4, but not MCT1.
    Tonouchi M; Hatta H; Bonen A
    Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1062-9. PubMed ID: 11934671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eccentric contractions decrease glucose transporter transcription rate, mRNA, and protein in skeletal muscle.
    Kristiansen S; Jones J; Handberg A; Dohm GL; Richter EA
    Am J Physiol; 1997 May; 272(5 Pt 1):C1734-8. PubMed ID: 9176166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoupling of in vivo torque production from EMG in mouse muscles injured by eccentric contractions.
    Warren GL; Ingalls CP; Shah SJ; Armstrong RB
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):609-19. PubMed ID: 10050026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate transport by skeletal muscle sarcolemmal vesicles.
    McDermott JC; Bonen A
    Mol Cell Biochem; 1993 May; 122(2):113-21. PubMed ID: 8232242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate transport in rat sarcolemmal vesicles and intact skeletal muscle, and after muscle contraction.
    McDermott JC; Bonen A
    Acta Physiol Scand; 1994 May; 151(1):17-28. PubMed ID: 8048333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactate/proton co-transport in skeletal muscle: regulation and importance for pH homeostasis.
    Juel C
    Acta Physiol Scand; 1996 Mar; 156(3):369-74. PubMed ID: 8729697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate/H+ transport kinetics in rat skeletal muscle related to fibre type and changes in transport capacity.
    Juel C; Pilegaard H
    Pflugers Arch; 1998 Jul; 436(4):560-4. PubMed ID: 9683729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle.
    Baker SK; McCullagh KJ; Bonen A
    J Appl Physiol (1985); 1998 Mar; 84(3):987-94. PubMed ID: 9480961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of 2-chloropropionate on initial lactate uptake by rat skeletal muscle sarcolemmal vesicles.
    Granier P; Dubouchaud H; Eydoux N; Mercier J; Préfaut C
    J Appl Physiol (1985); 1996 Nov; 81(5):1973-7. PubMed ID: 8941518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle lactate transport studied in sarcolemmal giant vesicles: dependence on fibre type and age.
    Juel C; Honig A; Pilegaard H
    Acta Physiol Scand; 1991 Dec; 143(4):361-5. PubMed ID: 1815471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans.
    Messonnier L; Kristensen M; Juel C; Denis C
    J Appl Physiol (1985); 2007 May; 102(5):1936-44. PubMed ID: 17289910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.