BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9530285)

  • 1. Peptide design aided by neural networks: biological activity of artificial signal peptidase I cleavage sites.
    Wrede P; Landt O; Klages S; Fatemi A; Hahn U; Schneider G
    Biochemistry; 1998 Mar; 37(11):3588-93. PubMed ID: 9530285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of cleavage-site patterns in protein precursor sequences with a perceptron-type neural network.
    Schneider G; Röhlk S; Wrede P
    Biochem Biophys Res Commun; 1993 Jul; 194(2):951-9. PubMed ID: 8343174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site.
    Schneider G; Wrede P
    Biophys J; 1994 Feb; 66(2 Pt 1):335-44. PubMed ID: 8161687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linkers for improved cleavage of fusion proteins with an engineered alpha-lytic protease.
    Lien S; Milner SJ; Graham LD; Wallace JC; Francis GL
    Biotechnol Bioeng; 2001 Aug; 74(4):335-43. PubMed ID: 11410858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of signal peptide changes on the extracellular processing of streptokinase from Escherichia coli: requirement for secondary structure at the cleavage junction.
    Pratap J; Dikshit KL
    Mol Gen Genet; 1998 May; 258(4):326-33. PubMed ID: 9648736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental proof for a signal peptidase I like activity in Mycoplasma pneumoniae, but absence of a gene encoding a conserved bacterial type I SPase.
    Catrein I; Herrmann R; Bosserhoff A; Ruppert T
    FEBS J; 2005 Jun; 272(11):2892-900. PubMed ID: 15943820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic investigation of the Staphylococcus aureus type I signal peptidase SpsB - implications for the search for novel antibiotics.
    Rao S; Bockstael K; Nath S; Engelborghs Y; Anné J; Geukens N
    FEBS J; 2009 Jun; 276(12):3222-34. PubMed ID: 19438721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type I signal peptidase: an overview.
    Tuteja R
    Arch Biochem Biophys; 2005 Sep; 441(2):107-11. PubMed ID: 16126156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of neighboring sequence environment in predicting cleavage sites of signal peptides.
    Li Y; Wen Z; Zhou C; Tan F; Li M
    Peptides; 2008 Sep; 29(9):1498-504. PubMed ID: 18635288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of signal peptides in protein sequences by neural networks.
    Plewczynski D; Slabinski L; Ginalski K; Rychlewski L
    Acta Biochim Pol; 2008; 55(2):261-7. PubMed ID: 18506221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal peptidase I processed secretory signal sequences: Selection for and against specific amino acids at the second position of mature protein.
    Zalucki YM; Jennings MP
    Biochem Biophys Res Commun; 2017 Feb; 483(3):972-977. PubMed ID: 28088521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal peptidase I-mediated processing of an engineered mammalian cytochrome b(5) precursor is an exocytoplasmic post-translocational event in Escherichia coli.
    Kaderbhai NN; Harding V; Kaderbhai MA
    Mol Membr Biol; 2008 Aug; 25(5):388-99. PubMed ID: 18651317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tat dependent export of E. coli phytase AppA by using the PhoD-specific transport system of Bacillus subtilis.
    Gerlach R; Pop O; Müller JP
    J Basic Microbiol; 2004; 44(5):351-9. PubMed ID: 15378526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2007 Jun; 357(3):633-40. PubMed ID: 17434148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Francisella tularensis genes encoding exported membrane-associated proteins using TnphoA mutagenesis of a genomic library.
    Gilmore RD; Bacon RM; Sviat SL; Petersen JM; Bearden SW
    Microb Pathog; 2004 Oct; 37(4):205-13. PubMed ID: 15458781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks.
    Blom N; Hansen J; Blaas D; Brunak S
    Protein Sci; 1996 Nov; 5(11):2203-16. PubMed ID: 8931139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bacterial signal peptide directs efficient secretion of eukaryotic proteins in the baculovirus expression system.
    Allet B; Bernard AR; Hochmann A; Rohrbach E; Graber P; Magnenat E; Mazzei GJ; Bernasconi L
    Protein Expr Purif; 1997 Feb; 9(1):61-8. PubMed ID: 9116503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library.
    Leeds JA; Boyd D; Huber DR; Sonoda GK; Luu HT; Engelman DM; Beckwith J
    J Mol Biol; 2001 Oct; 313(1):181-95. PubMed ID: 11601855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo approaches to studying the bacterial signal peptide processing.
    Wang P; Dalbey RE
    Methods Mol Biol; 2010; 619():21-37. PubMed ID: 20419402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the site of signal peptidase cleavage in normal and variant human preproalbumin.
    Peach RJ; Boswell DR; Brennan SO
    Protein Seq Data Anal; 1991 Aug; 4(2):123-6. PubMed ID: 1946330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.