BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9530627)

  • 1. Genomic DNA sequence of Rhesus (M. mulatta) cystic fibrosis (CFTR) gene.
    Wine JJ; Glavac D; Hurlock G; Robinson C; Lee M; Potocnik U; Ravnik-Glavac M; Dean M
    Mamm Genome; 1998 Apr; 9(4):301-5. PubMed ID: 9530627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene.
    Zielenski J; Rozmahel R; Bozon D; Kerem B; Grzelczak Z; Riordan JR; Rommens J; Tsui LC
    Genomics; 1991 May; 10(1):214-28. PubMed ID: 1710598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and localization of CFTR in the rhesus monkey surface airway epithelium.
    Dupuit F; Bout A; Hinnrasky J; Fuchey C; Zahm JM; Imler JL; Pavirani A; Valerio D; Puchelle E
    Gene Ther; 1995 Mar; 2(2):156-63. PubMed ID: 7536618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human CFTR gene sequences in regions flanking exon 10: a simple repeat sequence polymorphism in intron 9.
    Xu Z; Gruenert DC
    Biochem Biophys Res Commun; 1996 Feb; 219(1):140-5. PubMed ID: 8619797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative splicing of intron 23 of the human cystic fibrosis transmembrane conductance regulator gene resulting in a novel exon and transcript coding for a shortened intracytoplasmic C terminus.
    Yoshimura K; Chu CS; Crystal RG
    J Biol Chem; 1993 Jan; 268(1):686-90. PubMed ID: 7678008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and localization of CFTR in the rhesus monkey surface airway epithelium.
    Dupuit F
    Gene Ther; 1995 Dec; 2(10):791. PubMed ID: 8750020
    [No Abstract]   [Full Text] [Related]  

  • 7. Molecular cloning of the rhesus glycoprotein hormone alpha-subunit gene.
    Golos TG; Durning M; Fisher JM
    DNA Cell Biol; 1991 Jun; 10(5):367-80. PubMed ID: 1713773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splicing factors induce cystic fibrosis transmembrane regulator exon 9 skipping through a nonevolutionary conserved intronic element.
    Pagani F; Buratti E; Stuani C; Romano M; Zuccato E; Niksic M; Giglio L; Faraguna D; Baralle FE
    J Biol Chem; 2000 Jul; 275(28):21041-7. PubMed ID: 10766763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined analysis of the cystic fibrosis transmembrane conductance regulator: implications for structure and disease models.
    Chen JM; Cutler C; Jacques C; Boeuf G; Denamur E; Lecointre G; Mercier B; Cramb G; Férec C
    Mol Biol Evol; 2001 Sep; 18(9):1771-88. PubMed ID: 11504857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the duplication of CFTR exon 9 and its flanking sequences on diagnosis of cystic fibrosis mutations.
    El-Seedy A; Dudognon T; Bilan F; Pasquet MC; Reboul MP; Iron A; Kitzis A; Ladeveze V
    J Mol Diagn; 2009 Sep; 11(5):488-93. PubMed ID: 19710401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative genomic analysis of the cow, pig, and human CFTR genes identifies potential intronic regulatory elements.
    Williams SH; Mouchel N; Harris A
    Genomics; 2003 Jun; 81(6):628-39. PubMed ID: 12782133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and sequencing of rhesus monkey pepsinogen A cDNA.
    Evers MP; Zelle B; Bebelman JP; Pronk JC; Mager WH; Planta RJ; Eriksson AW; Frants RR
    Gene; 1988 May; 65(2):179-85. PubMed ID: 2900796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of an intron 12 splice donor mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene.
    Strong TV; Smit LS; Nasr S; Wood DL; Cole JL; Iannuzzi MC; Stern RC; Collins FS
    Hum Mutat; 1992; 1(5):380-7. PubMed ID: 1284540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplification of CFTR exon 9 sequences to multiple locations in the human genome.
    Rozmahel R; Heng HH; Duncan AM; Shi XM; Rommens JM; Tsui LC
    Genomics; 1997 Nov; 45(3):554-61. PubMed ID: 9367680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of cis-acting elements regulating the alternative splicing of human CFTR exon 9.
    Niksic M; Romano M; Buratti E; Pagani F; Baralle FE
    Hum Mol Genet; 1999 Dec; 8(13):2339-49. PubMed ID: 10556281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides.
    Igreja S; Clarke LA; Botelho HM; Marques L; Amaral MD
    Hum Mutat; 2016 Feb; 37(2):209-15. PubMed ID: 26553470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cross-species analysis of the cystic fibrosis transmembrane conductance regulator. Potential functional domains and regulatory sites.
    Diamond G; Scanlin TF; Zasloff MA; Bevins CL
    J Biol Chem; 1991 Nov; 266(33):22761-9. PubMed ID: 1719001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative expression patterns of multidrug-resistance P-glycoprotein (MDR1) and differentially spliced cystic-fibrosis transmembrane-conductance regulator mRNA transcripts in human epithelia.
    Bremer S; Hoof T; Wilke M; Busche R; Scholte B; Riordan JR; Maass G; Tümmler B
    Eur J Biochem; 1992 May; 206(1):137-49. PubMed ID: 1375156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative splicing of a previously unidentified CFTR exon introduces an in-frame stop codon 5' of the R region.
    Melo CA; Serra C; Stoyanova V; Aguzzoli C; Faraguna D; Tamanini A; Berton G; Cabrini G; Baralle FE
    FEBS Lett; 1993 Aug; 329(1-2):159-62. PubMed ID: 7689062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Severe splice site mutation preceding exon 9 of the CFTR gene.
    Dörk T; Fislage R; Rappen U; Tümmler B
    Hum Mol Genet; 1993 Aug; 2(8):1313-4. PubMed ID: 7691349
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.