These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 9530670)
1. [Type I collagen in xenogenic bone material regulates attachment and spreading of osteoblasts over the beta1 integrin subunit]. Baslé MF; Lesourd M; Grizon F; Pascaretti C; Chappard D Orthopade; 1998 Feb; 27(2):136-42. PubMed ID: 9530670 [TBL] [Abstract][Full Text] [Related]
2. Shape and orientation of osteoblast-like cells (Saos-2) are influenced by collagen fibers in xenogenic bone biomaterial. Baslé MF; Grizon F; Pascaretti C; Lesourd M; Chappard D J Biomed Mater Res; 1998 Jun; 40(3):350-7. PubMed ID: 9570064 [TBL] [Abstract][Full Text] [Related]
3. Detachment strength of human osteoblasts cultured on hydroxyapatite with various surface roughness. Contribution of integrin subunits. Kokkinos PA; Koutsoukos PG; Deligianni DD J Mater Sci Mater Med; 2012 Jun; 23(6):1489-98. PubMed ID: 22484862 [TBL] [Abstract][Full Text] [Related]
4. In vitro induction of a calcifying matrix by biomaterials constituted of collagen and/or hydroxyapatite: an ultrastructural comparison of three types of biomaterials. Serre CM; Papillard M; Chavassieux P; Boivin G Biomaterials; 1993; 14(2):97-106. PubMed ID: 8382091 [TBL] [Abstract][Full Text] [Related]
5. In vitro osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study. Taylor JC; Cuff SE; Leger JP; Morra A; Anderson GI Int J Oral Maxillofac Implants; 2002; 17(3):321-30. PubMed ID: 12074446 [TBL] [Abstract][Full Text] [Related]
6. Effects of bone morphogenetic protein-7 stimulation on osteoblasts cultured on different biomaterials. Açil Y; Springer IN; Broek V; Terheyden H; Jepsen S J Cell Biochem; 2002; 86(1):90-8. PubMed ID: 12112019 [TBL] [Abstract][Full Text] [Related]
7. Different substitute biomaterials as potential scaffolds in tissue engineering. Petrovic L; Schlegel AK; Schultze-Mosgau S; Wiltfang J Int J Oral Maxillofac Implants; 2006; 21(2):225-31. PubMed ID: 16634492 [TBL] [Abstract][Full Text] [Related]
8. Surface modification by complexes of vitronectin and growth factors for serum-free culture of human osteoblasts. Schleicher I; Parker A; Leavesley D; Crawford R; Upton Z; Xiao Y Tissue Eng; 2005; 11(11-12):1688-98. PubMed ID: 16411814 [TBL] [Abstract][Full Text] [Related]
9. Bone engineering-vitalisation of alloplastic and allogenic bone grafts by human osteoblast-like cells. Hinze MC; Wiedmann-Al-Ahmad M; Glaum R; Gutwald R; Schmelzeisen R; Sauerbier S Br J Oral Maxillofac Surg; 2010 Jul; 48(5):369-73. PubMed ID: 19596502 [TBL] [Abstract][Full Text] [Related]
10. In vitro growth and differentiation of osteoblast-like cells on hydroxyapatite ceramic granule calcified from red algae. Turhani D; Cvikl B; Watzinger E; Weissenböck M; Yerit K; Thurnher D; Lauer G; Ewers R J Oral Maxillofac Surg; 2005 Jun; 63(6):793-9. PubMed ID: 15944976 [TBL] [Abstract][Full Text] [Related]
11. Functional assay, expression of growth factors and proteins modulating bone-arrangement in human osteoblasts seeded on an anorganic bovine bone biomaterial. Trubiani O; Fulle S; Traini T; Paludi M; la Rovere R; Orciani M; Caputi S; Piattelli A Eur Cell Mater; 2010 Jul; 20():72-83. PubMed ID: 20648427 [TBL] [Abstract][Full Text] [Related]
12. Effects of Laddec on the formation of calcified bone matrix in rat calvariae cells culture. Hofman S; Sidqui M; Abensur D; Valentini P; Missika P Biomaterials; 1999 Jul; 20(13):1155-66. PubMed ID: 10395384 [TBL] [Abstract][Full Text] [Related]
13. Osteoconductivity of Complex Biomaterials Assayed by Fluorescent-Engineered Osteoblast-like Cells. Manfrini M; Mazzoni E; Barbanti-Brodano G; Nocini P; D'agostino A; Trombelli L; Tognon M Cell Biochem Biophys; 2015 Apr; 71(3):1509-15. PubMed ID: 25388843 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of enamel matrix proteins to a bovine-derived bone grafting material and its regulation of cell adhesion, proliferation, and differentiation. Miron RJ; Bosshardt DD; Hedbom E; Zhang Y; Haenni B; Buser D; Sculean A J Periodontol; 2012 Jul; 83(7):936-47. PubMed ID: 22141360 [TBL] [Abstract][Full Text] [Related]
15. Invitro study of adherent mandibular osteoblast-like cells on carrier materials. Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876 [TBL] [Abstract][Full Text] [Related]
16. Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Degasne I; Baslé MF; Demais V; Huré G; Lesourd M; Grolleau B; Mercier L; Chappard D Calcif Tissue Int; 1999 Jun; 64(6):499-507. PubMed ID: 10341022 [TBL] [Abstract][Full Text] [Related]
17. Bone formation and degradation behavior of nanocrystalline hydroxyapatite with or without collagen-type 1 in osteoporotic bone defects - an experimental study in osteoporotic goats. Alt V; Cheung WH; Chow SK; Thormann U; Cheung EN; Lips KS; Schnettler R; Leung KS Injury; 2016 Jun; 47 Suppl 2():S58-65. PubMed ID: 27338229 [TBL] [Abstract][Full Text] [Related]
18. Response of human osteoblasts to implant materials: integrin-mediated adhesion. Gronowicz G; McCarthy MB J Orthop Res; 1996 Nov; 14(6):878-87. PubMed ID: 8982129 [TBL] [Abstract][Full Text] [Related]
19. Diversity of bone matrix adhesion proteins modulates osteoblast attachment and organization of actin cytoskeleton. Demais V; Audrain C; Mabilleau G; Chappard D; Baslé MF Morphologie; 2014 Jun; 98(321):53-64. PubMed ID: 24735942 [TBL] [Abstract][Full Text] [Related]
20. Surface-reactive biomaterials in osteoblast cultures: an ultrastructural study. Sautier JM; Nefussi JR; Forest N Biomaterials; 1992; 13(6):400-2. PubMed ID: 1377034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]