These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9530810)

  • 21. Differential membrane protein phosphorylation in bovine retinal rod outer segment disk membranes as a function of disk age.
    Boesze-Battaglia K; Albert AD; Frye JS; Yeagle PL
    Biosci Rep; 1996 Aug; 16(4):289-97. PubMed ID: 8896788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Metabolism of 2-arachidonoylglycerol in Rod Outer Segments Is Modulated by Proteins Involved in the Phototransduction Process.
    Chamorro-Aguirre E; Gaveglio VL; Pascual AC; Pasquaré SJ
    Mol Neurobiol; 2024 Jul; 61(7):4577-4588. PubMed ID: 38109005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorylation of RGS9-1 by an endogenous protein kinase in rod outer segments.
    Hu G; Jang GF; Cowan CW; Wensel TG; Palczewski K
    J Biol Chem; 2001 Jun; 276(25):22287-95. PubMed ID: 11292825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of phosducin phosphorylation in retinal rods by Ca2+/calmodulin-dependent adenylyl cyclase.
    Willardson BM; Wilkins JF; Yoshida T; Bitensky MW
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1475-9. PubMed ID: 8643657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-induced membrane protein phosphorylation in the bovine rod outer segment. A magic angle spinning 31P-NMR study.
    Albert AD; Frye JS; Yeagle PL
    Biophys Chem; 1990 May; 36(1):27-31. PubMed ID: 2207270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclic AMP has no effect on the generation, recovery, or background adaptation of light responses in functionally intact rod outer segments: with implications about the function of phosducin.
    Jindrova H; Detwiler PB
    Vis Neurosci; 2000; 17(6):887-92. PubMed ID: 11193104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation by light of cyclic nucleotide-dependent protein kinases and their substrates in frog rod outer segments.
    Hamm H
    J Gen Physiol; 1990 Mar; 95(3):545-67. PubMed ID: 2157794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light-induced dephosphorylation of two proteins in frog rod outer segments: influence of cyclic nucleotides and calcium.
    Polans AS; Hermolin J; Bownds MD
    J Gen Physiol; 1979 Nov; 74(5):595-613. PubMed ID: 229195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation in sealed rod outer segments: effects of cyclic nucleotides.
    Shuster TA; Farber DB
    Biochemistry; 1984 Jan; 23(3):515-21. PubMed ID: 6322841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel mechanism for the activation of rhodopsin kinase: implications for other G protein-coupled receptor kinases (GRK's).
    Dean KR; Akhtar M
    Biochemistry; 1996 May; 35(19):6164-72. PubMed ID: 8634260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphoinositide metabolism in frog rod outer segments.
    Choe HG; Ghalayini AJ; Anderson RE
    Exp Eye Res; 1990 Aug; 51(2):167-76. PubMed ID: 2167231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments.
    Wilden U; Hall SW; Kühn H
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1174-8. PubMed ID: 3006038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhodopsin phosphorylation in bovine rod outer segments is more sensitive to the inhibitory action of recoverin at the low rhodopsin bleaching than it is at the high bleaching.
    Senin II; Zargarov AA; Akhtar M; Philippov PP
    FEBS Lett; 1997 May; 408(3):251-4. PubMed ID: 9188771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light-dependent association of Src with photoreceptor rod outer segment membrane proteins in vivo.
    Ghalayini AJ; Desai N; Smith KR; Holbrook RM; Elliott MH; Kawakatsu H
    J Biol Chem; 2002 Jan; 277(2):1469-76. PubMed ID: 11705988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcium-bound recoverin targets rhodopsin kinase to membranes to inhibit rhodopsin phosphorylation.
    Sanada K; Shimizu F; Kameyama K; Haga K; Haga T; Fukada Y
    FEBS Lett; 1996 Apr; 384(3):227-30. PubMed ID: 8617359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclic phosphorylation-dephosphorylation of rhodopsin in retina by protein kinase FA (the activator of ATP.Mg-dependent protein phosphatase).
    Yang SD; Benovic JL; Fong YL; Caron MG; Lefkowitz RJ
    Biochem Biophys Res Commun; 1991 Aug; 178(3):1306-11. PubMed ID: 1651717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zinc causes an apparent increase in rhodopsin phosphorylation.
    Shuster TA; Martin F; Nagy AK
    Curr Eye Res; 1996 Oct; 15(10):1019-24. PubMed ID: 8921240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhodopsin phosphorylation and dephosphorylation in vivo.
    Ohguro H; Van Hooser JP; Milam AH; Palczewski K
    J Biol Chem; 1995 Jun; 270(24):14259-62. PubMed ID: 7782279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C; Kühn H; Chabre M
    Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Molecular mechanisms of photoreception. VI. Cyclic nucleotide- and light-dependent phosphorylation of rod outer segment proteins in the frog retina].
    Krapivinskiĭ GB; Malenev AL; Fesenko EE
    Mol Biol (Mosk); 1987; 21(1):116-24. PubMed ID: 3033471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.