BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 9530824)

  • 1. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM).
    Oheim M; Loerke D; Stühmer W; Chow RH
    Eur Biophys J; 1998; 27(2):83-98. PubMed ID: 9530824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport, docking and exocytosis of single secretory granules in live chromaffin cells.
    Steyer JA; Horstmann H; Almers W
    Nature; 1997 Jul; 388(6641):474-8. PubMed ID: 9242406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exocytosis studies in a chromaffin cell-free system: imaging of single-vesicle exocytosis in a chromaffin cell-free system using total internal reflection fluorescence microscopy.
    Wiegand UK; Don-Wauchope A; Matskevich I; Duncan RR; Greaves J; Shipston MJ; Apps DK; Chow RH
    Ann N Y Acad Sci; 2002 Oct; 971():257-61. PubMed ID: 12438128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primed vesicles can be distinguished from docked vesicles by analyzing their mobility.
    Nofal S; Becherer U; Hof D; Matti U; Rettig J
    J Neurosci; 2007 Feb; 27(6):1386-95. PubMed ID: 17287513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observing secretory granules with a multiangle evanescent wave microscope.
    Rohrbach A
    Biophys J; 2000 May; 78(5):2641-54. PubMed ID: 10777760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM.
    Anantharam A; Onoa B; Edwards RH; Holz RW; Axelrod D
    J Cell Biol; 2010 Feb; 188(3):415-28. PubMed ID: 20142424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the Secretory Machinery Dynamics by Total Internal Reflection Fluorescence Microscopy in Bovine Adrenal Chromaffin Cells.
    Villanueva J; Gimenez-Molina Y; Gutiérrez LM
    Methods Mol Biol; 2019; 1860():379-389. PubMed ID: 30317519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering dead-end docking of large dense core vesicles in bovine chromaffin cells.
    Hugo S; Dembla E; Halimani M; Matti U; Rettig J; Becherer U
    J Neurosci; 2013 Oct; 33(43):17123-37. PubMed ID: 24155316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging Exocytosis with Total Internal Reflection Microscopy (TIRFM).
    Zenisek D; Perrais D
    CSH Protoc; 2007 Oct; 2007():pdb.prot4863. PubMed ID: 21356953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TIRFM and pH-sensitive GFP-probes to evaluate neurotransmitter vesicle dynamics in SH-SY5Y neuroblastoma cells: cell imaging and data analysis.
    Daniele F; Di Cairano ES; Moretti S; Piccoli G; Perego C
    J Vis Exp; 2015 Jan; (95):. PubMed ID: 25741799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secretory granule behaviour adjacent to the plasma membrane before and during exocytosis: total internal reflection fluorescence microscopy studies.
    Holz RW; Axelrod D
    Acta Physiol (Oxf); 2008 Feb; 192(2):303-7. PubMed ID: 18021319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying axial secretory-granule motion with variable-angle evanescent-field excitation.
    Loerke D; Stühmer W; Oheim M
    J Neurosci Methods; 2002 Sep; 119(1):65-73. PubMed ID: 12234637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of Total Internal Reflection Microscopy (TIRFM).
    Zenisek D; Perrais D
    CSH Protoc; 2007 Oct; 2007():pdb.top24. PubMed ID: 21356959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release.
    Oheim M; Loerke D; Chow RH; Stühmer W
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1381):307-18. PubMed ID: 10212479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay between membrane dynamics, diffusion and swelling pressure governs individual vesicular exocytotic events during release of adrenaline by chromaffin cells.
    Amatore C; Bouret Y; Travis ER; Wightman RM
    Biochimie; 2000 May; 82(5):481-96. PubMed ID: 10865134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the late steps of exocytosis: biochemical and total internal reflection fluorescence microscopy (TIRFM) studies.
    Holz RW
    Cell Mol Neurobiol; 2006; 26(4-6):439-47. PubMed ID: 16625428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy.
    Steyer JA; Almers W
    Biophys J; 1999 Apr; 76(4):2262-71. PubMed ID: 10096921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles.
    Oheim M; Loerke D; Stühmer W; Chow RH
    Eur Biophys J; 1999; 28(2):91-101. PubMed ID: 10028234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuropeptide release by efficient recruitment of diffusing cytoplasmic secretory vesicles.
    Han W; Ng YK; Axelrod D; Levitan ES
    Proc Natl Acad Sci U S A; 1999 Dec; 96(25):14577-82. PubMed ID: 10588747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells.
    Ohara-Imaizumi M; Nishiwaki C; Kikuta T; Nagai S; Nakamichi Y; Nagamatsu S
    Biochem J; 2004 Jul; 381(Pt 1):13-8. PubMed ID: 15128287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.