These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 9530871)

  • 1. Presence of the CO2-concentrating mechanism in some species of the pyrenoid-less free-living algal genus Chloromonas (Volvocales, Chlorophyta).
    Morita E; Abe T; Tsuzuki M; Fujiwara S; Sato N; Hirata A; Sonoike K; Nozaki H
    Planta; 1998 Mar; 204(3):269-76. PubMed ID: 9530871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Rubisco small subunits in the green algal genus Chloromonas provide insights into evolutionary loss of the eukaryotic carbon-concentrating organelle, the pyrenoid.
    Matsuzaki R; Suzuki S; Yamaguchi H; Kawachi M; Kanesaki Y; Yoshikawa H; Mori T; Nozaki H
    BMC Ecol Evol; 2021 Jan; 21(1):11. PubMed ID: 33514317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in pyrenoid morphology are correlated with differences in the rbcL genes of members of the Chloromonas lineage (volvocales, chlorophyceae).
    Nozaki H; Onishi K; Morita E
    J Mol Evol; 2002 Oct; 55(4):414-30. PubMed ID: 12355262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae.
    Goudet MMM; Orr DJ; Melkonian M; Müller KH; Meyer MT; Carmo-Silva E; Griffiths H
    New Phytol; 2020 Aug; 227(3):810-823. PubMed ID: 32249430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Spatial Interactome Reveals the Protein Organization of the Algal CO
    Mackinder LCM; Chen C; Leib RD; Patena W; Blum SR; Rodman M; Ramundo S; Adams CM; Jonikas MC
    Cell; 2017 Sep; 171(1):133-147.e14. PubMed ID: 28938113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrenoid Starch Sheath Is Required for LCIB Localization and the CO
    Toyokawa C; Yamano T; Fukuzawa H
    Plant Physiol; 2020 Apr; 182(4):1883-1893. PubMed ID: 32041908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrenoid proteomics reveals independent evolution of the CO
    Moromizato R; Fukuda K; Suzuki S; Motomura T; Nagasato C; Hirakawa Y
    Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2318542121. PubMed ID: 38408230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum.
    Kikutani S; Nakajima K; Nagasato C; Tsuji Y; Miyatake A; Matsuda Y
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9828-33. PubMed ID: 27531955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii.
    Yamano T; Toyokawa C; Shimamura D; Matsuoka T; Fukuzawa H
    Plant Physiol; 2022 Feb; 188(2):1081-1094. PubMed ID: 34791500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pyrenoid: the eukaryotic CO2-concentrating organelle.
    He S; Crans VL; Jonikas MC
    Plant Cell; 2023 Sep; 35(9):3236-3259. PubMed ID: 37279536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii.
    Yamano T; Tsujikawa T; Hatano K; Ozawa S; Takahashi Y; Fukuzawa H
    Plant Cell Physiol; 2010 Sep; 51(9):1453-68. PubMed ID: 20660228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrenoid loss in Chlamydomonas reinhardtii causes limitations in CO2 supply, but not thylakoid operating efficiency.
    Caspari OD; Meyer MT; Tolleter D; Wittkopp TM; Cunniffe NJ; Lawson T; Grossman AR; Griffiths H
    J Exp Bot; 2017 Jun; 68(14):3903-3913. PubMed ID: 28911055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient.
    Wang Y; Stessman DJ; Spalding MH
    Plant J; 2015 May; 82(3):429-448. PubMed ID: 25765072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields.
    Adler L; Díaz-Ramos A; Mao Y; Pukacz KR; Fei C; McCormick AJ
    Plant Physiol; 2022 Oct; 190(3):1609-1627. PubMed ID: 35961043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Condensation of Rubisco into a proto-pyrenoid in higher plant chloroplasts.
    Atkinson N; Mao Y; Chan KX; McCormick AJ
    Nat Commun; 2020 Dec; 11(1):6303. PubMed ID: 33298923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The intracellular localization of ribulose-1,5-bisphosphate Carboxylase/Oxygenase in chlamydomonas reinhardtii.
    Borkhsenious ON; Mason CB; Moroney JV
    Plant Physiol; 1998 Apr; 116(4):1585-91. PubMed ID: 9536077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii.
    Mitchell MC; Metodieva G; Metodiev MV; Griffiths H; Meyer MT
    J Exp Bot; 2017 Jun; 68(14):3891-3902. PubMed ID: 28520898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a novel gene, CIA6, required for normal pyrenoid formation in Chlamydomonas reinhardtii.
    Ma Y; Pollock SV; Xiao Y; Cunnusamy K; Moroney JV
    Plant Physiol; 2011 Jun; 156(2):884-96. PubMed ID: 21527423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The algal pyrenoid: key unanswered questions.
    Meyer MT; Whittaker C; Griffiths H
    J Exp Bot; 2017 Jun; 68(14):3739-3749. PubMed ID: 28911054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial carbonic anhydrases are needed for optimal photosynthesis at low CO2 levels in Chlamydomonas.
    Rai AK; Chen T; Moroney JV
    Plant Physiol; 2021 Nov; 187(3):1387-1398. PubMed ID: 34618049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.