These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 9531393)
1. Response of physeal cartilage to low-level compression and tension in organ culture. Mankin KP; Zaleske DJ J Pediatr Orthop; 1998; 18(2):145-8. PubMed ID: 9531393 [TBL] [Abstract][Full Text] [Related]
7. Exposure to a standard culture medium alters the response of cartilage explants to injurious unconfined compression. Rundell SA; Haut RC J Biomech; 2006; 39(10):1933-8. PubMed ID: 16054152 [TBL] [Abstract][Full Text] [Related]
8. Effects of damage in the articular surface on the cartilage response to injurious compression in vitro. Morel V; Berutto C; Quinn TM J Biomech; 2006; 39(5):924-30. PubMed ID: 16488230 [TBL] [Abstract][Full Text] [Related]
9. Dynamic compression inhibits the synthesis of nitric oxide and PGE(2) by IL-1beta-stimulated chondrocytes cultured in agarose constructs. Chowdhury TT; Bader DL; Lee DA Biochem Biophys Res Commun; 2001 Aug; 285(5):1168-74. PubMed ID: 11478777 [TBL] [Abstract][Full Text] [Related]
11. The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading. Ewers BJ; Dvoracek-Driksna D; Orth MW; Haut RC J Orthop Res; 2001 Sep; 19(5):779-84. PubMed ID: 11562121 [TBL] [Abstract][Full Text] [Related]
12. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. Shirazi R; Shirazi-Adl A; Hurtig M J Biomech; 2008 Dec; 41(16):3340-8. PubMed ID: 19022449 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading. Wu JZ; Herzog W J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231 [TBL] [Abstract][Full Text] [Related]
14. P188 reduces cell death and IGF-I reduces GAG release following single-impact loading of articular cartilage. Natoli RM; Athanasiou KA J Biomech Eng; 2008 Aug; 130(4):041012. PubMed ID: 18601454 [TBL] [Abstract][Full Text] [Related]
16. The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression. Li LP; Herzog W; Korhonen RK; Jurvelin JS Med Eng Phys; 2005 Jan; 27(1):51-7. PubMed ID: 15604004 [TBL] [Abstract][Full Text] [Related]
17. A direct compression stimulator for articular cartilage and meniscal explants. Aufderheide AC; Athanasiou KA Ann Biomed Eng; 2006 Sep; 34(9):1463-74. PubMed ID: 16897420 [TBL] [Abstract][Full Text] [Related]
18. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. Guilak F; Mow VC J Biomech; 2000 Dec; 33(12):1663-73. PubMed ID: 11006391 [TBL] [Abstract][Full Text] [Related]
19. Time-dependent changes in the response of cartilage to static compression suggest interstitial pH is not the only signaling mechanism. Boustany NN; Gray ML; Black AC; Hunziker EB J Orthop Res; 1995 Sep; 13(5):740-50. PubMed ID: 7472753 [TBL] [Abstract][Full Text] [Related]
20. Physeal cartilage exhibits rapid consolidation and recovery in intact knees that are physiologically loaded. Song Y; Lee D; Shin CS; Carter DR; Giori NJ J Biomech; 2013 May; 46(9):1516-23. PubMed ID: 23608339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]