BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9531397)

  • 1. Age of closure of the neurocentral cartilage in the thoracic spine.
    Yamazaki A; Mason DE; Caro PA
    J Pediatr Orthop; 1998; 18(2):168-72. PubMed ID: 9531397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI characteristics of the neurocentral synchondrosis.
    Rajwani T; Bhargava R; Moreau M; Mahood J; Raso VJ; Jiang H; Bagnall KM
    Pediatr Radiol; 2002 Nov; 32(11):811-6. PubMed ID: 12389110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphometric analysis of neurocentral synchondrosis using magnetic resonance imaging in the normal skeletally immature spine.
    Zhang H; Sucato DJ; Nurenberg P; McClung A
    Spine (Phila Pa 1976); 2010 Jan; 35(1):76-82. PubMed ID: 20042959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The components of the magnetic resonance image of the neurocentral junction.
    Rajwani T; Hilang EM; Secretan C; Bhargava R; Lambert R; Moreau M; Mahood J; Raso VJ; Bagnall KM
    Stud Health Technol Inform; 2002; 91():235-40. PubMed ID: 15457729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the neurocentral junction as seen on magnetic resonance images.
    Rajwani T; Bhargava R; Lambert R; Moreau M; Mahood J; Raso VJ; Jiang H; Huang EM; Wang X; Daniel A; Bagnall KM
    Stud Health Technol Inform; 2002; 91():229-34. PubMed ID: 15457728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertebral body growth after craniospinal irradiation.
    Hartley KA; Li C; Laningham FH; Krasin MJ; Xiong X; Merchant TE
    Int J Radiat Oncol Biol Phys; 2008 Apr; 70(5):1343-9. PubMed ID: 18164830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI evaluation of growth plate closure rate and pattern in the normal knee joint.
    Sasaki T; Ishibashi Y; Okamura Y; Toh S; Sasaki T
    J Knee Surg; 2002; 15(2):72-6. PubMed ID: 12013076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth Patterns of the Neurocentral Synchondrosis (NCS) in Immature Cadaveric Vertebra.
    Blakemore L; Schwend R; Akbarnia BA; Dumas M; Schmidt J
    J Pediatr Orthop; 2018 Mar; 38(3):181-184. PubMed ID: 27137907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sexual dimorphism in human vertebral body shape.
    Taylor JR; Twomey LT
    J Anat; 1984 Mar; 138 ( Pt 2)(Pt 2):281-6. PubMed ID: 6715250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging of the cervical ligaments in the absence of trauma.
    Saifuddin A; Green R; White J
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1686-91; discussion 1691-2. PubMed ID: 12897492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The position of the aorta relative to the spine in patients with left thoracic scoliosis: a comparison with normal patients.
    Milbrandt TA; Sucato DJ
    Spine (Phila Pa 1976); 2007 May; 32(12):E348-53. PubMed ID: 17515808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilateral pulvinar signal intensity decrease on T2-weighted images in patients with aspartylglucosaminuria.
    Autti T; Lönnqvist T; Joensuu R
    Acta Radiol; 2008 Jul; 49(6):687-92. PubMed ID: 18568562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An audit of magnetic resonance imaging in the paediatric orthopaedic setting.
    Walker ML; Nicol RO
    N Z Med J; 1998 Nov; 111(1077):430-2. PubMed ID: 9861924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paget disease of the spine manifested by thoracic and lumbar epidural lipomatosis: magnetic resonance imaging findings.
    Oikonomou A; Birbilis T; Gymnopoulou E; Prassopoulos P
    Spine (Phila Pa 1976); 2007 Dec; 32(25):E789-92. PubMed ID: 18245996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pulsing electromagnetic fields on bone growth and articular cartilage.
    Smith RL; Nagel DA
    Clin Orthop Relat Res; 1983 Dec; (181):277-82. PubMed ID: 6641061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla.
    Welsch GH; Zak L; Mamisch TC; Resinger C; Marlovits S; Trattnig S
    Invest Radiol; 2009 Sep; 44(9):603-12. PubMed ID: 19692843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facet asymmetry in normal vertebral growth: characterization and etiologic theory of scoliosis.
    Masharawi YM; Peleg S; Albert HB; Dar G; Steingberg N; Medlej B; Abbas J; Salame K; Mirovski Y; Peled N; Hershkovitz I
    Spine (Phila Pa 1976); 2008 Apr; 33(8):898-902. PubMed ID: 18404110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance imaging patterns of the development of the sphenoid sinus: a review of 800 patients.
    Reittner P; Doerfler O; Goritschnig T; Tillich M; Koele W; Stammberger H; Szolar DH
    Rhinology; 2001 Sep; 39(3):121-4. PubMed ID: 11721499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patellar cartilage lesions: comparison of magnetic resonance imaging and T2 relaxation-time mapping.
    Hannila I; Nieminen MT; Rauvala E; Tervonen O; Ojala R
    Acta Radiol; 2007 May; 48(4):444-8. PubMed ID: 17453527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.