These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 9531446)

  • 41. Control of the cardiovascular and respiratory systems during sleep.
    Benarroch EE
    Auton Neurosci; 2019 May; 218():54-63. PubMed ID: 30890349
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Respiratory activity in the facial nucleus in an in vitro brainstem of tadpole, Rana catesbeiana.
    Liao G-S ; Kubin L; Galante RJ; Fishman AP; Pack AI
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):529-44. PubMed ID: 9019548
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sensorimotor cortical influences on cuneate nucleus rhythmic activity in the anesthetized cat.
    Marino J; Canedo A; Aguilar J
    Neuroscience; 2000; 95(3):657-73. PubMed ID: 10670434
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanisms underlying the generation of autonomorespiratory coupling amongst the respiratory central pattern generator, sympathetic oscillators, and cardiovagal premotoneurons.
    Ghali MGZ; Ghali GZ; Lima A; McDermott M; Glover E; Voglis S; Humphrey J; König MSS; Brem H; Uhlén P; Spetzler RF; Yasargil MG
    J Integr Neurosci; 2020 Sep; 19(3):521-560. PubMed ID: 33070533
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The 10-Hz sympathetic rhythm is dependent on raphe and rostral ventrolateral medullary neurons.
    Zhong S; Huang ZS; Gebber GL; Barman SM
    Am J Physiol; 1993 May; 264(5 Pt 2):R857-66. PubMed ID: 8498594
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential control of sympathetic nerve discharge by the brain stem.
    Barman SM; Gebber GL; Calaresu FR
    Am J Physiol; 1984 Sep; 247(3 Pt 2):R513-9. PubMed ID: 6476150
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Forced oscillations in sympathetic nerve discharge.
    Huang ZS; Gebber GL; Zhong S; Barman SM
    Am J Physiol; 1992 Sep; 263(3 Pt 2):R564-71. PubMed ID: 1415642
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcium oscillations in rhythmically active respiratory neurones in the brainstem of the mouse.
    Frermann D; Keller BU; Richter DW
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):119-31. PubMed ID: 9925883
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neural dynamics during repetitive visual stimulation.
    Tsoneva T; Garcia-Molina G; Desain P
    J Neural Eng; 2015 Dec; 12(6):066017. PubMed ID: 26479469
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coordination dynamics of circulatory and respiratory rhythms during psychomotor drive reduction.
    Perlitz V; Cotuk B; Lambertz M; Grebe R; Schiepek G; Petzold ER; Schmid-Schönbein H; Flatten G
    Auton Neurosci; 2004 Sep; 115(1-2):82-93. PubMed ID: 15507409
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two types of intrinsic oscillations in neurons of the lateral and basolateral nuclei of the amygdala.
    Pape HC; Paré D; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):205-16. PubMed ID: 9425192
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonlinear interactions of slow and rapid rhythms in sympathetic nerve discharge.
    Zhong S; Gebber GL; Zhou SY; Barman SM
    Am J Physiol; 1998 Aug; 275(2):H331-40. PubMed ID: 9683418
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ionic basis for endogenous rhythmic patterns induced by activation of N-methyl-D-aspartate receptors in neurons of the rat nucleus tractus solitarii.
    Tell F; Jean A
    J Neurophysiol; 1993 Dec; 70(6):2379-90. PubMed ID: 7509858
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of caloric stimulation on respiratory frequency and heart rate and blood pressure variability.
    Jauregui-Renaud K; Yarrow K; Oliver R; Gresty MA; Bronstein AM
    Brain Res Bull; 2000 Sep; 53(1):17-23. PubMed ID: 11033204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. EEG bands during wakefulness, slow-wave and paradoxical sleep as a result of principal component analysis in man.
    Corsi-Cabrera M; Guevara MA; Del Río-Portilla Y; Arce C; Villanueva-Hernández Y
    Sleep; 2000 Sep; 23(6):738-44. PubMed ID: 11007440
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visualization of sleep influences on cerebellar and brainstem cardiac and respiratory control mechanisms.
    Harper RM; Woo MA; Alger JR
    Brain Res Bull; 2000 Sep; 53(1):125-31. PubMed ID: 11033217
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glial-neuronal interactions in the central nervous cardiovascular and respiratory control.
    Kasparov S
    Exp Physiol; 2011 Apr; 96(4):391-2. PubMed ID: 21402879
    [No Abstract]   [Full Text] [Related]  

  • 58. Increased activity of bulbospinal cardiovascular neurons in the rat rostral ventrolateral medulla upon emergence from anaesthesia.
    Frugière A; Quintin L; Barillot JC
    J Auton Nerv Syst; 1996 Oct; 61(1):87-95. PubMed ID: 8912258
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Brainstem neurons projecting to the rostral ventral respiratory group (VRG) in the medulla oblongata of the rat revealed by co-application of NMDA and biocytin.
    Zheng Y; Riche D; Rekling JC; Foutz AS; Denavit-Saubié M
    Brain Res; 1998 Jan; 782(1-2):113-25. PubMed ID: 9519255
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlation of discharges of rostral ventrolateral medullary neurons with the low-frequency sympathetic rhythm in rats.
    Tseng WT; Chen RF; Tsai ML; Yen CT
    Neurosci Lett; 2009 Apr; 454(1):22-7. PubMed ID: 19429047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.