These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 9531539)

  • 1. The guanosine nucleotide (p)ppGpp initiates development and A-factor production in myxococcus xanthus.
    Harris BZ; Kaiser D; Singer M
    Genes Dev; 1998 Apr; 12(7):1022-35. PubMed ID: 9531539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus.
    Singer M; Kaiser D
    Genes Dev; 1995 Jul; 9(13):1633-44. PubMed ID: 7628697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Myxococcus xanthus Nla4 protein is important for expression of stringent response-associated genes, ppGpp accumulation, and fruiting body development.
    Ossa F; Diodati ME; Caberoy NB; Giglio KM; Edmonds M; Singer M; Garza AG
    J Bacteriol; 2007 Dec; 189(23):8474-83. PubMed ID: 17905995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stringent response in Myxococcus xanthus is regulated by SocE and the CsgA C-signaling protein.
    Crawford EW; Shimkets LJ
    Genes Dev; 2000 Feb; 14(4):483-92. PubMed ID: 10691740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus.
    Kasai K; Nishizawa T; Takahashi K; Hosaka T; Aoki H; Ochi K
    J Bacteriol; 2006 Oct; 188(20):7111-22. PubMed ID: 17015650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of sigmaD in regulating genes and signals during Myxococcus xanthus development.
    Viswanathan P; Singer M; Kroos L
    J Bacteriol; 2006 May; 188(9):3246-56. PubMed ID: 16621817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mutagenesis of ppGpp: turning a RelA activator into an inhibitor.
    Beljantseva J; Kudrin P; Jimmy S; Ehn M; Pohl R; Varik V; Tozawa Y; Shingler V; Tenson T; Rejman D; Hauryliuk V
    Sci Rep; 2017 Feb; 7():41839. PubMed ID: 28157202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicellular development in Myxococcus xanthus is stimulated by predator-prey interactions.
    Berleman JE; Kirby JR
    J Bacteriol; 2007 Aug; 189(15):5675-82. PubMed ID: 17513469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene.
    Flärdh K; Axberg T; Albertson NH; Kjelleberg S
    J Bacteriol; 1994 Oct; 176(19):5949-57. PubMed ID: 7928955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glyphosate induces the synthesis of ppGpp.
    Cruvinel GT; Neves HI; Spira B
    Mol Genet Genomics; 2019 Feb; 294(1):191-198. PubMed ID: 30284619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guanosine 3',5'-bispyrophosphate coordinates global gene expression during glucose-lactose diauxie in Escherichia coli.
    Traxler MF; Chang DE; Conway T
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2374-9. PubMed ID: 16467149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of the invariant residue G791 in Escherichia coli 16S rRNA implicates RelA in ribosome function.
    Kim HM; Ryou SM; Song WS; Sim SH; Cha CJ; Han SH; Ha NC; Kim JH; Bae J; Cunningham PR; Lee K
    J Bacteriol; 2009 Apr; 191(7):2042-50. PubMed ID: 19168615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guanosine tetraphosphate inhibits protein synthesis in vivo. A possible protective mechanism for starvation stress in Escherichia coli.
    Svitil AL; Cashel M; Zyskind JW
    J Biol Chem; 1993 Feb; 268(4):2307-11. PubMed ID: 8428905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis.
    Nanamiya H; Kasai K; Nozawa A; Yun CS; Narisawa T; Murakami K; Natori Y; Kawamura F; Tozawa Y
    Mol Microbiol; 2008 Jan; 67(2):291-304. PubMed ID: 18067544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of ppGpp in a relA mutant of Escherichia coli during amino acid starvation.
    Török I; Kari C
    J Biol Chem; 1980 May; 255(9):3838-40. PubMed ID: 6768741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SpoT Induces Intracellular
    Fitzsimmons LF; Liu L; Kant S; Kim JS; Till JK; Jones-Carson J; Porwollik S; McClelland M; Vazquez-Torres A
    mBio; 2020 Feb; 11(1):. PubMed ID: 32098823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nla18, a key regulatory protein required for normal growth and development of Myxococcus xanthus.
    Diodati ME; Ossa F; Caberoy NB; Jose IR; Hiraiwa W; Igo MM; Singer M; Garza AG
    J Bacteriol; 2006 Mar; 188(5):1733-43. PubMed ID: 16484184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relA/spoT-homologous gene in Streptomyces coelicolor encodes both ribosome-dependent (p)ppGpp-synthesizing and -degrading activities.
    Martínez-Costa OH; Fernández-Moreno MA; Malpartida F
    J Bacteriol; 1998 Aug; 180(16):4123-32. PubMed ID: 9696759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility.
    Yang Z; Geng Y; Xu D; Kaplan HB; Shi W
    Mol Microbiol; 1998 Dec; 30(5):1123-30. PubMed ID: 9988486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myxococcus xanthus sasN encodes a regulator that prevents developmental gene expression during growth.
    Xu D; Yang C; Kaplan HB
    J Bacteriol; 1998 Dec; 180(23):6215-23. PubMed ID: 9829930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.