These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 9531990)
1. Mono and double modified teicoplanin aglycon derivatives on the amino acid no. 7; structure-activity relationship. Pavlov AY; Preobrazhenskaya MN; Malabarba A; Ciabatti R; Colombo L J Antibiot (Tokyo); 1998 Jan; 51(1):73-8. PubMed ID: 9531990 [TBL] [Abstract][Full Text] [Related]
2. New semisynthetic glycopeptides MDL 63,246 and MDL 63,042, and other amide derivatives of antibiotic A-40,926 active against highly glycopeptide-resistant VanA enterococci. Malabarba A; Ciabatti R; Scotti R; Goldstein BP; Ferrari P; Kurz M; Andreini BP; Denaro M J Antibiot (Tokyo); 1995 Aug; 48(8):869-83. PubMed ID: 7592033 [TBL] [Abstract][Full Text] [Related]
3. Role of the glycopeptide framework in the antibacterial activity of hydrophobic derivatives of glycopeptide antibiotics. Printsevskaya SS; Pavlov AY; Olsufyeva EN; Mirchink EP; Preobrazhenskaya MN J Med Chem; 2003 Mar; 46(7):1204-9. PubMed ID: 12646030 [TBL] [Abstract][Full Text] [Related]
4. Lipophilic teicoplanin pseudoaglycon derivatives are active against vancomycin- and teicoplanin-resistant enterococci. Szűcs Z; Bereczki I; Csávás M; Rőth E; Borbás A; Batta G; Ostorházi E; Szatmári R; Herczegh P J Antibiot (Tokyo); 2017 May; 70(5):664-670. PubMed ID: 28144040 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic deacylation of teicoplanin followed by reductive alkylation: synthesis and antibacterial activity of new glycopeptides. Snyder NJ; Cooper RD; Briggs BS; Zmijewski M; Mullen DL; Kaiser RE; Nicas TI J Antibiot (Tokyo); 1998 Oct; 51(10):945-51. PubMed ID: 9917008 [TBL] [Abstract][Full Text] [Related]
7. A new type of chemical modification of glycopeptides antibiotics: aminomethylated derivatives of eremomycin and their antibacterial activity. Pavlov AY; Lazhko EI; Preobrazhenskaya MN J Antibiot (Tokyo); 1997 Jun; 50(6):509-13. PubMed ID: 9268008 [TBL] [Abstract][Full Text] [Related]
10. Diazo transfer-click reaction route to new, lipophilic teicoplanin and ristocetin aglycon derivatives with high antibacterial and anti-influenza virus activity: an aggregation and receptor binding study. Pintér G; Batta G; Kéki S; Mándi A; Komáromi I; Takács-Novák K; Sztaricskai F; Röth E; Ostorházi E; Rozgonyi F; Naesens L; Herczegh P J Med Chem; 2009 Oct; 52(19):6053-61. PubMed ID: 19791806 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and antibacterial activity of alkyl derivatives of the glycopeptide antibiotic A40926 and their amides. Maffioli SI; Ciabatti R; Romanò G; Marzorati E; Preobrazhenskaya M; Pavlov A Bioorg Med Chem Lett; 2005 Aug; 15(16):3801-5. PubMed ID: 15993054 [TBL] [Abstract][Full Text] [Related]
12. New semisynthetic teicoplanin derivatives have comparable in vitro activity to that of oritavancin against clinical isolates of VRE. Szűcs Z; Ostorházi E; Kicsák M; Nagy L; Borbás A; Herczegh P J Antibiot (Tokyo); 2019 Jul; 72(7):524-534. PubMed ID: 30874609 [TBL] [Abstract][Full Text] [Related]
13. Amides of de-acetylglucosaminyl-deoxy teicoplanin active against highly glycopeptide-resistant enterococci. Synthesis and antibacterial activity. Malabarba A; Ciabatti R; Kettenring J; Ferrari P; Scotti R; Goldstein BP; Denaro M J Antibiot (Tokyo); 1994 Dec; 47(12):1493-506. PubMed ID: 7844044 [TBL] [Abstract][Full Text] [Related]
14. Antimicrobial spectrum and potency of dalbavancin tested against clinical isolates from Europe and North America (2003): initial results from an international surveillance protocol. Jones RN; Fritsche TR; Sader HS; Goldstein BP J Chemother; 2005 Dec; 17(6):593-600. PubMed ID: 16433188 [TBL] [Abstract][Full Text] [Related]
15. Antibiotic repurposing: bis-catechol- and mixed ligand (bis-catechol-mono-hydroxamate)-teicoplanin conjugates are active against multidrug resistant Acinetobacter baumannii. Ghosh M; Miller PA; Miller MJ J Antibiot (Tokyo); 2020 Mar; 73(3):152-157. PubMed ID: 31836835 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the in-vitro activity of the glycopeptide antibiotic LY333328 in comparison with vancomycin and teicoplanin. Harland S; Tebbs SE; Elliott TS J Antimicrob Chemother; 1998 Feb; 41(2):273-6. PubMed ID: 9533471 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and evaluation of methyl ether derivatives of the vancomycin, teicoplanin, and ristocetin aglycon methyl esters. McComas CC; Crowley BM; Hwang I; Boger DL Bioorg Med Chem Lett; 2003 Sep; 13(17):2933-6. PubMed ID: 14611861 [TBL] [Abstract][Full Text] [Related]
18. In vitro activity of teicoplanin against gram-positive cocci. Allouch P; Pina P; Chaplain C; Delarbre JM; Geffroy F; Grasmick CP; Marcolin M; Morel A; Pangon B; Rio Y; Sédaillan A Pathol Biol (Paris); 2000 Oct; 48(8):792-5. PubMed ID: 11244609 [TBL] [Abstract][Full Text] [Related]
19. Nano-sized clusters of a teicoplanin ψ-aglycon-fullerene conjugate. Synthesis, antibacterial activity and aggregation studies. Tollas S; Bereczki I; Sipos A; Rőth E; Batta G; Daróczi L; Kéki S; Ostorházi E; Rozgonyi F; Herczegh P Eur J Med Chem; 2012 Aug; 54():943-8. PubMed ID: 22795664 [TBL] [Abstract][Full Text] [Related]
20. [In vitro activity of vancomycin and teicoplanin against gram-positive cocci]. Bezian MC; Ribou G; Masquelier B Pathol Biol (Paris); 1992 May; 40(5):461-5. PubMed ID: 1386667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]