These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 9533581)
1. Computer-aided breast cancer detection and diagnosis of masses using difference of Gaussians and derivative-based feature saliency. Polakowski WE; Cournoyer DA; Rogers SK; DeSimio MP; Ruck DW; Hoffmeister JW; Raines RA IEEE Trans Med Imaging; 1997 Dec; 16(6):811-9. PubMed ID: 9533581 [TBL] [Abstract][Full Text] [Related]
2. Detection of breast masses in mammograms by density slicing and texture flow-field analysis. Mudigonda NR; Rangayyan RM; Desautels JE IEEE Trans Med Imaging; 2001 Dec; 20(12):1215-27. PubMed ID: 11811822 [TBL] [Abstract][Full Text] [Related]
3. Location of mammograms ROI's and reduction of false-positive. Salazar-Licea LA; Pedraza-Ortega JC; Pastrana-Palma A; Aceves-Fernandez MA Comput Methods Programs Biomed; 2017 May; 143():97-111. PubMed ID: 28391823 [TBL] [Abstract][Full Text] [Related]
4. Radiomics based detection and characterization of suspicious lesions on full field digital mammograms. Sapate SG; Mahajan A; Talbar SN; Sable N; Desai S; Thakur M Comput Methods Programs Biomed; 2018 Sep; 163():1-20. PubMed ID: 30119844 [TBL] [Abstract][Full Text] [Related]
5. Computer-aided diagnosis: automatic detection of malignant masses in digitized mammograms. Méndez AJ; Tahoces PG; Lado MJ; Souto M; Vidal JJ Med Phys; 1998 Jun; 25(6):957-64. PubMed ID: 9650186 [TBL] [Abstract][Full Text] [Related]
6. Statistical textural features for detection of microcalcifications in digitized mammograms. Kim JK; Park HW IEEE Trans Med Imaging; 1999 Mar; 18(3):231-8. PubMed ID: 10363701 [TBL] [Abstract][Full Text] [Related]
7. Parameter optimization of a computer-aided diagnosis system for detection of masses on digitized mammograms. Radovic M; Milosevic M; Ninkovic S; Filipovic N; Peulic A Technol Health Care; 2015; 23(6):757-74. PubMed ID: 26409521 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided classification of mammographic masses using visually sensitive image features. Wang Y; Aghaei F; Zarafshani A; Qiu Y; Qian W; Zheng B J Xray Sci Technol; 2017; 25(1):171-186. PubMed ID: 27911353 [TBL] [Abstract][Full Text] [Related]
9. Breast cancer detection: evaluation of a mass-detection algorithm for computer-aided diagnosis -- experience in 263 patients. Petrick N; Sahiner B; Chan HP; Helvie MA; Paquerault S; Hadjiiski LM Radiology; 2002 Jul; 224(1):217-24. PubMed ID: 12091686 [TBL] [Abstract][Full Text] [Related]
10. Computer-aided detection systems for breast masses: comparison of performances on full-field digital mammograms and digitized screen-film mammograms. Wei J; Hadjiiski LM; Sahiner B; Chan HP; Ge J; Roubidoux MA; Helvie MA; Zhou C; Wu YT; Paramagul C; Zhang Y Acad Radiol; 2007 Jun; 14(6):659-69. PubMed ID: 17502255 [TBL] [Abstract][Full Text] [Related]
11. Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier. Delogu P; Evelina Fantacci M; Kasae P; Retico A Comput Biol Med; 2007 Oct; 37(10):1479-91. PubMed ID: 17383623 [TBL] [Abstract][Full Text] [Related]
12. Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification. Petrick N; Chan HP; Wei D; Sahiner B; Helvie MA; Adler DD Med Phys; 1996 Oct; 23(10):1685-96. PubMed ID: 8946366 [TBL] [Abstract][Full Text] [Related]
13. Classification of malignant and benign masses based on hybrid ART2LDA approach. Hadjiiski L; Sahiner B; Chan HP; Petrick N; Helvie M IEEE Trans Med Imaging; 1999 Dec; 18(12):1178-87. PubMed ID: 10695530 [TBL] [Abstract][Full Text] [Related]
14. Computerized detection of breast masses in digitized mammograms. Varela C; Tahoces PG; Méndez AJ; Souto M; Vidal JJ Comput Biol Med; 2007 Feb; 37(2):214-26. PubMed ID: 16620805 [TBL] [Abstract][Full Text] [Related]
15. Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection. Rojas Domínguez A; Nandi AK Comput Med Imaging Graph; 2008 Jun; 32(4):304-15. PubMed ID: 18358699 [TBL] [Abstract][Full Text] [Related]
16. Classification of Breast Masses Using a Computer-Aided Diagnosis Scheme of Contrast Enhanced Digital Mammograms. Danala G; Patel B; Aghaei F; Heidari M; Li J; Wu T; Zheng B Ann Biomed Eng; 2018 Sep; 46(9):1419-1431. PubMed ID: 29748869 [TBL] [Abstract][Full Text] [Related]
17. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. Sahiner B; Chan HP; Petrick N; Wei D; Helvie MA; Adler DD; Goodsitt MM IEEE Trans Med Imaging; 1996; 15(5):598-610. PubMed ID: 18215941 [TBL] [Abstract][Full Text] [Related]
18. An automatic mass detection system in mammograms based on complex texture features. Tai SC; Chen ZS; Tsai WT IEEE J Biomed Health Inform; 2014 Mar; 18(2):618-27. PubMed ID: 24608061 [TBL] [Abstract][Full Text] [Related]
19. Malignant and benign clustered microcalcifications: automated feature analysis and classification. Jiang Y; Nishikawa RM; Wolverton DE; Metz CE; Giger ML; Schmidt RA; Vyborny CJ; Doi K Radiology; 1996 Mar; 198(3):671-8. PubMed ID: 8628853 [TBL] [Abstract][Full Text] [Related]
20. Detection of microcalcifications in digital mammograms using wavelet filter and Markov random field model. Yu SN; Li KY; Huang YK Comput Med Imaging Graph; 2006 Apr; 30(3):163-73. PubMed ID: 16723208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]