These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 9533624)
1. Surface-exposed phenylalanines in the RNP1/RNP2 motif stabilize the cold-shock protein CspB from Bacillus subtilis. Schindler T; Perl D; Graumann P; Sieber V; Marahiel MA; Schmid FX Proteins; 1998 Mar; 30(4):401-6. PubMed ID: 9533624 [TBL] [Abstract][Full Text] [Related]
2. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Schröder K; Graumann P; Schnuchel A; Holak TA; Marahiel MA Mol Microbiol; 1995 May; 16(4):699-708. PubMed ID: 7476164 [TBL] [Abstract][Full Text] [Related]
3. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions. Wunderlich M; Martin A; Schmid FX J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264 [TBL] [Abstract][Full Text] [Related]
4. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Schindelin H; Marahiel MA; Heinemann U Nature; 1993 Jul; 364(6433):164-8. PubMed ID: 8321288 [TBL] [Abstract][Full Text] [Related]
5. Single-stranded DNA binding of the cold-shock protein CspB from Bacillus subtilis: NMR mapping and mutational characterization. Zeeb M; Balbach J Protein Sci; 2003 Jan; 12(1):112-23. PubMed ID: 12493834 [TBL] [Abstract][Full Text] [Related]
6. Structure in solution of the major cold-shock protein from Bacillus subtilis. Schnuchel A; Wiltscheck R; Czisch M; Herrler M; Willimsky G; Graumann P; Marahiel MA; Holak TA Nature; 1993 Jul; 364(6433):169-71. PubMed ID: 8321289 [TBL] [Abstract][Full Text] [Related]
7. The family of cold shock proteins of Bacillus subtilis. Stability and dynamics in vitro and in vivo. Schindler T; Graumann PL; Perl D; Ma S; Schmid FX; Marahiel MA J Biol Chem; 1999 Feb; 274(6):3407-13. PubMed ID: 9920884 [TBL] [Abstract][Full Text] [Related]
8. Microsecond folding of the cold shock protein measured by a pressure-jump technique. Jacob M; Holtermann G; Perl D; Reinstein J; Schindler T; Geeves MA; Schmid FX Biochemistry; 1999 Mar; 38(10):2882-91. PubMed ID: 10074340 [TBL] [Abstract][Full Text] [Related]
9. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. Willimsky G; Bang H; Fischer G; Marahiel MA J Bacteriol; 1992 Oct; 174(20):6326-35. PubMed ID: 1400185 [TBL] [Abstract][Full Text] [Related]
10. Acquisition of double-stranded DNA-binding ability in a hybrid protein between Escherichia coli CspA and the cold shock domain of human YB-1. Wang N; Yamanaka K; Inouye M Mol Microbiol; 2000 Nov; 38(3):526-34. PubMed ID: 11069676 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability. Delbrück H; Mueller U; Perl D; Schmid FX; Heinemann U J Mol Biol; 2001 Oct; 313(2):359-69. PubMed ID: 11800562 [TBL] [Abstract][Full Text] [Related]
12. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. Mueller U; Perl D; Schmid FX; Heinemann U J Mol Biol; 2000 Apr; 297(4):975-88. PubMed ID: 10736231 [TBL] [Abstract][Full Text] [Related]
13. T-rich DNA single strands bind to a preformed site on the bacterial cold shock protein Bs-CspB. Max KE; Zeeb M; Bienert R; Balbach J; Heinemann U J Mol Biol; 2006 Jul; 360(3):702-14. PubMed ID: 16780871 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions. Makhatadze GI; Loladze VV; Gribenko AV; Lopez MM J Mol Biol; 2004 Feb; 336(4):929-42. PubMed ID: 15095870 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic properties of an extremely rapid protein folding reaction. Schindler T; Schmid FX Biochemistry; 1996 Dec; 35(51):16833-42. PubMed ID: 8988022 [TBL] [Abstract][Full Text] [Related]
16. Interactions of the major cold shock protein of Bacillus subtilis CspB with single-stranded DNA templates of different base composition. Lopez MM; Yutani K; Makhatadze GI J Biol Chem; 1999 Nov; 274(47):33601-8. PubMed ID: 10559248 [TBL] [Abstract][Full Text] [Related]
17. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins. Gribenko AV; Makhatadze GI J Mol Biol; 2007 Feb; 366(3):842-56. PubMed ID: 17188709 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the expression of the cold shock proteins CspB and CspC in Bacillus subtilis. Kaan T; Jürgen B; Schweder T Mol Gen Genet; 1999 Sep; 262(2):351-4. PubMed ID: 10517332 [TBL] [Abstract][Full Text] [Related]
19. Electrostatic contributions to the stability of a thermophilic cold shock protein. Zhou HX; Dong F Biophys J; 2003 Apr; 84(4):2216-22. PubMed ID: 12668430 [TBL] [Abstract][Full Text] [Related]
20. Origins of the high stability of an in vitro-selected cold-shock protein. Martin A; Kather I; Schmid FX J Mol Biol; 2002 May; 318(5):1341-9. PubMed ID: 12083522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]